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In this paper, exact analytical solutions for the non-stationary linear 
inverse heat conduction problem for bodies of one-dimensional 
geometry with boundary non-stationary conditions on one and two 
boundary surfaces are obtained in a closed recurrent form. The 
recurrent form of writing the solution of the non-stationary linear 
inverse heat conduction problem for bodies of one-dimensional 
geometry with boundary non-stationary temperature conditions 
on one and two boundary surfaces is a closed-form solution from 
unified positions, which is not always possible in an explicit form.
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Introduction Relevance of the Application of Inverse Problems 
of Heat Conduction and Heat Transfer
Direct mathematical modeling makes it possible to predict the 
thermal state of a wide range of operating modes, for example, of 
a technical system, to analyze the influence of various factors on 
the behavior of this system, and to select optimal thermal modes. 
The use of direct methods of mathematical modeling requires 
an analysis of the accuracy of mathematical models. The model 
can have a very complex structure and take into account a fairly 
large number of factors. However, in this case, it is necessary to 
set the numerical values of all the characteristics included in the 
model, in particular, the thermophysical properties of materials, 
characteristics of thermal interaction with the washing medium, 
etc. If information is absent or has low accuracy, then the complex 
mathematical model loses its merits and does not provide the re-
quired forecast accuracy thermal modes. The practical application 
of mathematical modeling of heat transfer shows that the possible 
unsatisfactory accuracy in mathematical modeling, for example, 
of high-intensity thermal processes is due to the low accuracy of 
determining the characteristics using traditional direct methods 
[19]. In such cases, the use of computational and experimental 
methods, which are based on the principles of identifying systems 
with distributed parameters, based on algorithms and methods for 

solving various types of ill-posed inverse heat transfer problems 
[19], can be very effective. high-intensity thermal processes due 
to the low accuracy of determining the characteristics using tradi-
tional direct methods [19]. In such cases, the use of computational 
and experimental methods, which are based on the principles of 
identifying systems with distributed parameters, based on algo-
rithms and methods for solving various types of ill-posed inverse 
heat transfer problems [19], can be very effective. high-intensity 
thermal processes due to the low accuracy of determining the 
characteristics using traditional direct methods [19]. In such cases, 
the use of computational and experimental methods, which are 
based on the principles of identifying systems with distributed 
parameters, based on algorithms and methods for solving various 
types of ill-posed inverse heat transfer problems [19], can be very 
effective.	

As is known, in direct problems the required temperature is the 
temperature field, which is found as a solution of the heat equation 
with known internal transfer parameters corresponding to known 
boundary and initial conditions, and in inverse heat conduction 
problems the initial temperature distribution and boundary condi-
tions are unknown functions to be determined. Inverse problems 
are divided into two main types: a) determination of the parameters 
of internal energy transfer - the coefficients of thermal and thermal 
diffusivity, heat capacity, light absorption coefficients, etc., which 
are the physical characteristics of a substance; b) determination 
of the conditions for external exchange of energy between the 
body and the environment, i.e. finding boundary conditions: this 
includes calculating the temperature of the outer surface and the 
heat flux passing through it, calculation of variable heat transfer 
coefficients, thermal contact resistances, degrees of emissivity, 
angular coefficients of irradiation, position of the surface of a phase 
transition or destruction, drawing up non-stationary balances of 
power and energy, etc. [nineteen]. It is clear that it is much more 
difficult to obtain a solution to the inverse problem of heat conduc-
tion than to the direct problem, however, in the direct problem, 
when measuring or implementing the given boundary conditions, 
many experimental obstacles can arise. Physical conditions are, 
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for example, such that it is practically not always possible to 
install the sensor on the surface of the body or the measurement 
accuracy is significantly reduced due to the placement of the 
sensors. Consequently, it is often difficult to measure the law of 
change in the temperature of the heated surface of a solid. It is 
much easier to perform sufficiently accurate measurements of the 
temporal dependences of temperature at internal points on the 
thermally insulated surface of the body. Thus, the problem arises 
of choosing between relatively imprecise measurements and a 
complex analytical task. At the same time, a sufficiently accurate 
and easily realizable solution to the inverse problem would simul-
taneously reduce both difficulties to a minimum [19]. The direct 
problem of heat conductivity under correctly stated conditions has 
a unique solution. In the case of inverse problems, the identity of 
the temperature fields is possible as a result of external influences 
that are different in nature, but energetically equivalent [5, 6, 19]. 
The temperature field of a solid does not uniquely determine the 
boundary conditions under which it arose. A number of boundary 
conditions, which are energetically equivalent in their effects on 
the system, can reflect complex temperature processes in differ-
ent ways. An example is the fact that any redistribution of heat 
flux densities, for example, between convective and radiation 
components, when combined, leads to an identical thermal state 
of the system [19]. There are also other disadvantages inherent in 
the reverse methods of studying unsteady heat transfer in techni-
cal systems: limitation of the number of points in the details, in 
which temperatures and heat fluxes are measured; experimentally 
determined values of temperatures and heat fluxes, on the basis 
of which the calculations are made, contain measurement errors 
even when using precision instruments, since placing the sensors 
in a solid to some extent violates the temperature field of the parts; 
surface curvature, spatial and temporal changes in heat fluxes in 
the body do not make it possible to accurately predict the direc-
tion of the heat flux, or in other words, to determine the location 
of the sensor, which should be on the normal to the surface. It 
should be noted that inverse methods do not provide the possibil-
ity of physical interpretation of nonstationary complex processes 
occurring in systems. In addition to the disadvantages, including 
the above, the reverse methods have some advantages over the 
direct ones. In the direct problem, when measuring or realizing 
the given boundary conditions, many experimental obstacles can 
arise. The physical conditions in the systems under study can be 
as follows: that it is impossible to install the sensor on the surface 
of the body (for example, on the surface of coatings) or the meas-
urement accuracy is significantly reduced due to the placement 
of the sensors, therefore it is often difficult to measure the law 
of change in temperatures and heat fluxes of surfaces of solids. 
Summarizing the above, we can conclude that there is a relevance 
of obtaining in a unified form an exact closed analytical solution 
of the nonstationary linear inverse problem of heat conduction for 
bodies of one-dimensional geometry with boundary conditions 
on one or two surfaces. In research, the exact closed analytical 
solution of this inverse problem of heat conduction is achieved in 
a recurrent form, i.e. in an implicit form, since this is not always 
possible in an explicit form [2-6]. on the surface of coatings) or the 
measurement accuracy is significantly reduced due to the place-
ment of sensors, therefore it is often difficult to measure the law 
of change in temperatures and heat fluxes of surfaces of solids. 
Summarizing the above, we can conclude that there is a relevance 
of obtaining in a unified form an exact closed analytical solution 
of the nonstationary linear inverse problem of heat conduction for 
bodies of one-dimensional geometry with boundary conditions 
on one or two surfaces. In research, the exact closed analytical 
solution of this inverse problem of heat conduction is achieved in 
a recurrent form, i.e. in an implicit form, since this is not always 

possible in an explicit form [2-6]. on the surface of coatings) or the 
measurement accuracy is significantly reduced due to the place-
ment of sensors, therefore it is often difficult to measure the law 
of change in temperatures and heat fluxes of surfaces of solids. 
Summarizing the above, we can conclude that there is a relevance 
of obtaining in a unified form an exact closed analytical solution 
of the nonstationary linear inverse problem of heat conduction for 
bodies of one-dimensional geometry with boundary conditions 
on one or two surfaces. In research, the exact closed analytical 
solution of this inverse problem of heat conduction is achieved in 
a recurrent form, i.e. in an implicit form, since this is not always 
possible in an explicit form [2-6]. we can conclude that there is a 
relevance of obtaining in a unified form an exact closed analyti-
cal solution of the nonstationary linear inverse problem of heat 
conduction for bodies of one-dimensional geometry with boundary 
conditions on one or on two surfaces. In research, the exact closed 
analytical solution of this inverse problem of heat conduction is 
achieved in a recurrent form, i.e. in an implicit form, since this is 
not always possible in an explicit form [2-6]. we can conclude that 
there is a relevance of obtaining in a unified form an exact closed 
analytical solution of the nonstationary linear inverse problem 
of heat conduction for bodies of one-dimensional geometry with 
boundary conditions on one or on two surfaces. In research, the 
exact closed analytical solution of this inverse problem of heat 
conduction is achieved in a recurrent form, i.e. in an implicit 
form, since this is not always possible in an explicit form [2-6].

Solutions in a Recurrent Form for a Nonstationary Linear 
Inverse Problem of Heat Conduction for Bodies of One-Dimen-
sional Geometry With Boundary Conditions on one Surface
Existing exact solutions of the inverse problems of unsteady heat 
conduction are relatively few in number, and there are significantly 
fewer of them than the corresponding solutions of the direct 
problem of unsteady heat conduction. It can be pointed out that 
one of the first successful attempts to solve the inverse problem 
of unsteady heat conduction for a flat body was first undertaken 
in 1890 by J. Stephan [1]. Subsequently, for a one-dimensional 
linear inverse non-stationary heat conduction problem, solutions 
were obtained in an independent way by OR Burggraf and D. 
Langford under the assumption that the non-stationary heat flux 
density and temperature are known at the point of location of the 
sensor [2, 3]. The exact solutions for the temperature fields from 
the previously known temperatures at two different internal points 
by the integral Laplace transform were obtained by M. Imber and 
D. Khan [4]. Similar solutions for one-dimensional bodies are also 
given in [5, 6] in which solutions for unsteady temperatures are 
given explicitly, and the heat flux density was determined by dif-
ferentiating the temperature fields. Subsequently, solutions were 
obtained to similar problems, partly having not only theoretical but 
also applied character, including the nonlinear one-dimensional 
problem of nonstationary heat conduction [7–19]. As was partly 
indicated in [2-6], the explicit expression of solutions for a non-
stationary linear inverse problem of heat conduction for bodies 
of one-dimensional geometry is not possible in all cases; there-
fore, in order to obtain the final solution, additional assumptions 
have to be applied, for example, as in [2] where the thin-wall 
assumption is used. The aim of the study is to obtain a solution 
to the nonstationary linear inverse problem of heat conduction for 
bodies of one-dimensional geometry with boundary conditions 
on one surface from single positions in a closed recurrent form, 
which will have certain advantages over solutions in an explicit 
form, since they can be obtained for all the above problems, and 
explicitly - not for everyone. Let us write the equation of nonlinear 
unsteady heat conductivity for a body of one-dimensional geom-
etry and constant curvature (in this case, the radial coordinate is 
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considered) in the following form [5] since they can be obtained 
for all of the above tasks, but explicitly - not for all. Let us write 
the equation of nonlinear unsteady heat conductivity for a body 
of one-dimensional geometry and constant curvature (in this case, 
the radial coordinate is considered) in the following 

where k is the number of final measurements: 1 - flat field; 2 - cy-
lindrical; 3 - spherical; t is the temperature; r - radial coordinate; 
a - coefficient of thermal diffusivity. The domain of definition of 
the differential equation (1) is from 0 to r2 (radial coordinate of the 
outer surface) along the coordinate (in the case of hollow bodies: 
from r1 (radial coordinate of the inner surface) to r2 and from 0 
to the current valueτ by time (τ> 0). In dimensionless form, this 
equation can be written as follows [5].

where is the Fourier criterion; T is the dimensionless temperature; 
ρ = r / r1 - dimensionless coordinate; r1 is the radial coordinate 
at which the boundary conditions are set. The inverse problem of 
heat conduction for Eqs. (1) or (2) consists in finding the boundary 
conditions on the surface of a one-dimensional body at known 
non-stationary temperature and heat flux and thermophysical 
characteristics of the body material, independent of temperature. 
The study investigates the process of heat conduction at a time 
that is sufficiently distant from the initial time, so the influence of 
the initial conditions has practically no effect on the temperature 
distribution at the time of measurement or observation (the so-
called “problem without initial conditions”). In practical terms, 
this may mean that at a sufficient distance from the initial time 
of the aftereffect component, taking into account the influence of 
the initial conditions, becomes so small that it will already be less 
than the measurement error of sensors that measure temperatures 
and heat fluxes [5, 6]. The component of the effect of the tem-
perature field of a one-dimensional layer, which is heated on the 
inner surface, is considered using a dimensionless coordinate for 
which the heated surface corresponds to a unit value (the homo-
chronism complex refers to a given internal radial coordinate), 
can be represented in the following form [5].

where is the Kirpichev criterion; - Fourier criterion; ρ = r / r1 - 
dimensionless coordinate; r1 —radial coordinate at which the 
boundary conditions are set; a - coefficient of thermal diffusiv-
ity; λ is the thermal conductivity coefficient; q is the heat flux 
density; Δt is the temperature difference. On the heated surface, 
the boundary condition of the second kind takes place. In this 
case, the heat flux density and temperature are measured on the 
same surface. Solutions for bodies of simple configuration will 
differ in the values of the radial quasi-polynomials Pn, 1 and Pn, 
2. Within the framework of this work, these quasi-polynomials 

will be solved in recurrent forms, in contrast to [2-6] and [7-19].

Flat Plate
Quasi-polynomials Pn, 1 and Pn, 2 for a flat plate will be as fol-
lows:

For the first quasi-polynomials Р1,1 and Р2,1, etc., Р1,2 and Р2,2, 
etc. for a flat plate, you can write:

Therefore, using the method of mathematical induction, one can 
writeFind quasi-polynomials for solving the inverse non-stationary 
heat conduction problem when setting the boundary conditions 
on the same surface for a flat plate in recurrent form:

Solid Cylinder
Quasi-polynomials Рn, 1 for a solid cylinder will be as follows:

Therefore, using the method of mathematical induction, one can 
writeFind quasi-polynomials for solving the inverse non-stationary 
heat conduction problem when setting the boundary condition on 
the axis of a solid cylinder in a recurrent form:

Hollow Cylinder
Quasi-polynomials Pn, 1 and Pn, 2 for a hollow cylinder will be as 
follows:

For the first quasi-polynomials Р1,1 and Р2,1, Р1,2 and Р2,2, etc. 
for a hollow cylinder, you can write:
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Therefore, using the method of mathematical induction, one can write down quasi-polynomials for solving the inverse non-stationary 
heat conduction problem when setting the boundary condition on the inner surface of a hollow cylinder in recurrent form:

Solid Ball
Quasi-polynomials Рn, 1 for a solid ball will be as follows:

For the first quasi-polynomials Рn, 1, etc. for a solid ball, you can 
write:

Therefore, using the method of mathematical induction, one can 
writeFind quasi-polynomials for solving the inverse non-stationary 
problem of heat conduction when setting the boundary condition 
at the center of a solid ball in a recurrent form:

Hollow Ball
Quasi-polynomials Pn, 1 and Pn, 2 for a hollow ball will be as 
follows:

For the first quasi-polynomials Р1,1 and Р2,1, Р1,2 and Р2,2, etc. 
for a hollow ball, you can write:

Therefore, using the method of mathematical induction, one can 
write down quasi-polynomials for solving the inverse non-station-
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ary heat conduction problem when setting the boundary condition 
on the inner surface of the hollow sphere in recurrent form:

For given unsteady boundary conditions on one surface Θn, 1 and 
Θn, 2 the re-currence relations are as follows:

The above relations express the recurrent form of the exact solu-
tion to the inverse problem of unsteady heat conductionfor bod-
ies of one-dimensional geometry with non-stationary boundary 
conditions specified on one side. The recurrent form of writing 
the solution makes it possible to solve this problem from a uni-
fied position in a closed form, since the expression of solutions 
in explicit form, as, for example, in [7-19], is possible not in all 
cases, as indicated in [2, 5, 6] The issues of correctness of this 
inverse problem of heat conduction (i.e, the existence of a solu-
tion, its uniqueness and its stability) were considered in detail in 
[5, 6], therefore, in this study there is no need to reconsider them. 
The above solutions of the non-stationary inverse problem of heat 
conduction for one-dimensional bodies, obtained in this work, 
were successfully applied in a practical way as an integral part 
of the conjugate problem in determining the maximum effect of 
the carbon layer on the surface of the combustion chamber on the 
non-stationary parameters of the working fluid during radiation-
convective heat transfer [20-22], and also in the development of 
the theory of heat transfer in heat-insulating packaging to stabilize 
the temperature regimes of storage of perishable products [23-24]. 
For heat transfer conditions typical of [23–24], calculations were 
carried out using the dependences generated in this study. With the 
same temperature boundary condition, the largest deviation will 
be for a flat body, and the smallest for a solid sphere; for a solid 
cylinder, there will be an intermediate value. For both a hollow 
cylinder and a hollow ball, the temperature deviation will be larger 
than for a solid cylinder and a ball, respectively. Comparison of 
a hollow cylinder with a hollow ball shows that for small values 
of r2 / r1, the deviation for a hollow cylinder will be less than for 
a hollow ball, but for large values of r2 / r1, the deviation for a 
hollow cylinder will already be greater than for a hollow ball. For 
the conditions considered in [23-24], the above break occurs at a 
value of r2 / r1 ≈ 3 2/15. The analysis of the calculations performed 
indicates a stronger dependence of the calculated temperature on 
the parameter r2 / r1 for a hollow sphere than for a hollow cylinder. 
Comparison of a hollow cylinder with a hollow ball shows that 
for small values of r2 / r1, the deviation for a hollow cylinder 
will be less than for a hollow ball, but for large values of r2 / r1, 
the deviation for a hollow cylinder will already be greater than 
for a hollow ball. For the conditions considered in [23-24], the 
above break occurs at a value of r2 / r1 ≈ 3 2/15. The analysis of 
the calculations performed indicates a stronger dependence of the 
calculated temperature on the parameter r2 / r1 for a hollow sphere 
than for a hollow cylinder. Comparison of a hollow cylinder with a 
hollow ball shows that for small values of r2 / r1, the deviation for 
a hollow cylinder will be less than for a hollow ball, but for large 
values of r2 / r1, the deviation for a hollow cylinder will already 
be greater than for a hollow ball. For the conditions considered 
in [23-24], the above break occurs at a value of r2 / r1 ≈ 3 2/15. 
The analysis of the calculations performed indicates a stronger 
dependence of the calculated temperature on the parameter r2 / 
r1 for a hollow sphere than for a hollow cylinder.

Solutions In a Recurrent Form for a Nonstationary Linear 
Inverse Problem of Heat Conduction for Bodies of One-Di-
mensional Geometry with Boundary Temperature Conditions 
on Both Surfaces
Temperature fields of hollow cylinders and spheres, plates, whose 
faces are in different media, are asymmetric, but one-dimensional. 
An asymmetric temperature field is obtained from measurements 
of temperatures at the boundaries of a body, which should be 
known in advance as functions of time. The component of the 
effect of the temperature field of a one-dimensional layer, on the 
boundaries of which there are non-stationary temperature bounda-
ries, is considered when using a dimensionless coordinate: the first 
point is taken as the origin of coordinates, and the second has a 
unit abscissa (for a flat field); the first point has a unit abscissa, 
and the second has a point ρ2 (for spherical and cylindrical fields) 
can be represented in the following form [5].

On both surfaces, the boundary condition of the first kind holds. 
In this case, temperatures are measured at the boundary surfaces. 
Solutions for bodies of simple configuration will differ in the 
values of the radial quasi-polynomials Pn, 1 and Pn, 2. Within the 
framework of this work, these quasi-polynomials will be solved 
in recurrent forms, in contrast to [2-6] and [7-19].

Recursive Form Solutions for a Nonstationary Linear In-
verse Heat Conduction Problem for Flat Plates and Hollow 
Spheres (Bodies of One-Dimensional Geometry) With Bound-
ary Temperature Conditions on Both Surfaces without Using 
Bernoulli Numbers
In this section, the problem is posed to obtain the data of recur-
rent solutions without using the Bernoulli numbers Bn, but using 
the solution method based on recurrent dependencies, which are 
similarly used for plane, cylindrical and spherical fields.

Flat Plate (Solution Without using Bernoulli Numbers Bn)
Quasipolynomials for solving the inverse unsteady heat conduc-
tion problem when setting the tem-perature boundary conditions 
on both boundary surfaces for a flat plate in a recurrent form are 
ob-tained from the solutions obtained for the inverse nonstation-
ary heat conduction problem when set-ting the boundary condi-
tion on the “inner” surface of the flat plate, i.e. formulas (9) and 
(10). Quasi-polynomials Pn, 1 and Pn, 2 for a flat plate will be 
as follows:

For the first quasi-polynomials Р1,1 and Р2,1, Р1,2 and Р2,2, etc. 
for a flat plate, you can write:
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Here it is convenient to introduce local notation, which is valid only for this section, in order to avoid discrepancies in the solution 
of the problem in the future:

In other words, the functions Fn, 1 and Fn, 2 in the framework of this section denote the quasi-polynomials Pn, 1 and Pn, 2 for the 
inverse nonstationary heat conduction problem when the boundary condition on the inner surface of a flat plate is specified from 
formulas (9) and (10), respectively. First we solve the problem for Рn, 2, since it is simpler than for Рn, 1; the solution of the first 
problem will be taken as a basis for solving the second problem. We rewrite the anti-Laplacians P1,2 in the following form:

In order to obtain a recurrent solution to this problem, we rewrite the last expression as follows:

Where. Subsequent anti-Laplacians for quasi polynomials Рn, 2 will be as follows:Φ1,2=F1,2

Where; 

Hence, n-th degree anti-Laplacians for quasi-polynomials Рn, 2 can be written in the following form:
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As can be seen from the formula (58), for its solution it is used 
as a “direct” recurrence, i.e. the use of the previous members of 
the series for the current member of a series, and “partial” recur-
rence, i.e. use in the output for the current member of a part of 
the same member of the series. Now the func-tion Φi, 2 should be 
determined. For this, a form should be formalized for them. Let 
us rewrite Eq. (54) for Φ1,2 in the form typical for larger values 
of the parameter i, namely:

For the expression Φ1,2 from formula (59) to be identically equal 
to its definition from (54), it is necessary (since F0,2= ln ρ) so that:

After the last formalization, we can write a closed expression 
for Φi, 2:

Thus, expressions (58), (61), (60) give an exact solution to the 
quasi-polynomial problem for solving the inverse nonstationary 
heat conduction problem when setting the temperature bound-
ary conditions on both boundary surfaces for a flat plate in a 
recurrent form. As can be seen, the solution for the functions Φi, 
2 formally contains terms with. Obviously, all these terms are 
absent, for example, in (54) - (58). This is quite natural, since in 
the accepted representation (59) for Φi, 2 these terms are fictitious 
and equal (since) to zero: In the solution for Рn, 2 (58) there are 
no terms with Φ0.2, but there are terms with F0.2. The solution 
for Φi, 2 (61) lacks terms with F0,2, but formally there are terms 
with identically zero.

Now you should get a solution for quasi-polynomials Рn, 1, us-
ing the above solution method and based on the already available 
solutions for Рn, 2, Fn, 1, Fn, 2. Addition (40) and (41) for the 
first terms gives the following expression:

Where. In what follows, for Рn, 1, we will proceed in the same way 
as in the solution for quasi-polynomials Рn, 2, namely: Φ1,1=F1,1

Where. Subsequent anti-Laplacians for quasi-polynomials Рn, 1 
will be as follows: Φ1,1=F1,1

Where. Therefore, n-th degree anti-Laplacians for quasi-polyno-
mials Рn, 1 can be written in the

Now the function Φi, 1 should be determined. For this, a form 
should be formalized for them. Let us rewrite Eq. (67) for Φ1,1 
in the form typical for larger values of the parameter i, namely:

For the expression Φ1,1 from formula (68) to be identically equal 
to its definition from (62), it is necessary (since F0,2= ln ρ) so that:

After the last formalization, we can write a closed expression 
for Φi, 1:

So the expressions (67), (70), (69) give an exact solution to the 
quasi-polynomial problem for solving the inverse non-stationary 
heat conduction problem when setting the temperature bound-
ary condi-tions on both boundary surfaces for a flat plate in a 
recurrent form. As can be seen, the solution for the functions Φi, 
1 formally contains terms with. Obviously, all these terms are 
absent, for example, in (62) - (70). This is quite natural, since in 
the accepted representation (70) for Φi, 1 these terms are fictitious 
and equal (since) to zero:

The solution for Рn, 1 (67) does not contain terms with Φ0.1, 
but there are terms with F0.2. The solution for Φi, 1 (70) lacks 
terms with F0,2, but formally there are terms with identically 
equal to zero.

In principle, the problem of the exact solution of quasi-polyno-
mials Pn, 2 - (58), (61), (60) - and Pn, 1 - (67), (70), (69) - for the 
inverse non-stationary heat conduction problem when setting the 
temperature boundary conditions on both boundary surfaces for 
a flat plate in a recurrent form can be completed. However, it is 
possible to write these solutions in a combined form, for which it 
is necessary to rewrite in the appropriate form the series for Φi, 1 
and Φi, 2 from formulas (61) and (70), respectively:

In the combined form, the exact solutions of this problem (for Pn, 
1 - (67) and for Pn, 2 - (58)) will look like this:
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Hollow cylinder
Quasi-polynomials Pn, 1 and Pn, 2 for a hollow cylinder will be as 
follows:

For the first quasi-polynomials Р1,1 and Р2,1, Р1,2 and Р2,2, etc. for a hollow cylinder, you can write:

The quasi-polynomials for solving the inverse unsteady heat conduction problem when setting the temperature boundary condi-
tions on both boundary surfaces for a hollow cylinder in a recurrent form are obtained as follows, based on the solutions obtained 
for the inverse unsteady heat conduc-tion problem when setting the boundary condition on the inner surface of the hollow cylinder, 
i.e. formulas (24) and (25). Here it is convenient to introduce local notation, which is valid only for this section, in order to avoid 
discrepancies in the solution of the problem in the future:

In other words, the functions Fn, 1 and Fn, 2 in the framework of this section denote the quasi-polynomials Pn, 1 and Pn, 2 for the 
inverse nonstationary heat conduction problem when the boundary condition on the inner surface of the hollow cylinder is specified 
from formulas (24) and (25), respectively. First we solve the problem for Рn, 2, since it is simpler than for Рn, 1; solving the first 
problem will be the basis for solving the second problem. It’s obvious that:

We rewrite the anti-Laplacians P1,2 in the following form:



Citation: Lobanov Igor Evgenievich (2020) Exact Analytical Solutions for a Nonstationary Linear Inverse Problem of Heat Conduction for Bodies of One-Dimensional 
Geometry with Boundary Conditions on One Surface, as Well as on Two Surfaces for a Plane Body, a Cold Cylinder and a Hollow Sphere, Obtained in a Closed 
Recurrent Form. Journal of Material Sciences & Manufacturing Research. SRC/JMSMR-106. DOI: doi.org/10.47363/JMSMR/2020(1)105

J Mater Sci Manufac Res 2020

In order to obtain a recurrent solution to this problem, we rewrite the last expression as follows:

Where. Subsequent anti-Laplacians for quasi polynomials Рn, 2 will be as follows:

Where. Consequently, n-th degree anti-Laplacians for quasi-polynomials Рn, 2 can be written in the following form:

As can be seen from the formula (90), for its solution it is used as a “direct” recurrence, i.e. the use of the previous members of the 
series for the current member of a series, and “partial” recurrence, i.e. use in the output for the current member of a part of the same 
member of the series. Now the func-tion Φi, 2 should be determined. For this, a form should be formalized for them. Let us rewrite 
equation (86) for Φ1,2 in the form typical for larger values of the parameter i, namely:

For the expression Φ1,2 from formula (91) to be identically equal to its definition from (86), it is necessary (since F0,2= ln ρ) so that:

After the last formalization, we can write a closed expression for Φi, 2:

Thus, expressions (90), (93), (92) give an exact solution to the quasi-polynomial problem for solving the inverse non-stationary heat 
conduction problem when setting the temperature boundary condi-tions on both boundary surfaces for a hollow cylinder in a recur-
rent form. As can be seen, the solu-tion for the functions Φi, 2 formally contains terms with. Obviously, all these terms are absent, 
for example, in (84) - (90). This is quite natural, since in the accepted representation (93) for Φi, 2 these terms are fictitious and equal 
(since) to zero: In the solution for Рn, 2 (90) there are no terms with Φ0.2, but there are terms with F0.2. The solution for Φi, 2 (93) 
does not contain terms with F0,2, but formally there are terms with identically equal to zero.

Now you should get a solution for quasi-polynomials Рn, 1, using the above solution method and based on the already available 
solutions for Рn, 2, Fn, 1, Fn, 2. It’s obvious that:

Addition (75) and (76) for the first terms gives the following expression:
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In what follows, for Рn, 1, we will proceed in the same way as in the solution for quasi-polynomials Рn, 2, namely:

Where. Subsequent anti-Laplacians for quasi-polynomials Рn, 1 will be as follows:Φ1,1=F1,1

Hence, n-th degree anti-Laplacians for quasi-polynomials Рn, 1 can be written in the following form:

Now the function Φi, 1 should be determined. For this, a form should be formalized for them. Let us rewrite Eq. (96) for Φ1,1 in the 
form typical for larger values of the parameter i, namely:

For the expression Φ1,1 from formula (101) to be identically equal to its definition from (96), it is necessary (since F0,2= ln ρ) so that:

After the last formalization, we can write a closed expression for Φi, 1:

Thus, expressions (100), (103), (102) give an exact solution to the quasi-polynomial problem for solving the inverse non-stationary 
heat conduction problem when setting the temperature boundary conditions on both boundary surfaces for a hollow cylinder in a 
recurrent form. As can be seen, the solution for the functions Φi, 1 formally contains terms with. Obviously, all these terms are absent, 
for example, in (94) - (103). This is quite natural, since in the accepted representation (103) for Φi, 1 these terms are fictitious and 
equal (since) to zero: In the solution for Pn, 1 (100), there are no terms with Φ0.1, but there are terms with F0.2. The solution for 
Φi, 1 (103) does not contain terms with F0,2, but formally there are terms with identically equal to zero. In principle, the problem 
of the ex-act solution of quasi-polynomials Рn, 2 - (90), (93), (92) - and Рn, 1 - (100), (103), (102) - for the in-verse non-stationary 
heat conduction problem when setting the temperature boundary conditions on both boundary surfaces for a hollow cylinder in a 
recurrent form, it can be completed. However, it is possible to write these solutions in a combined form, for which it is necessary to 
rewrite in the ap-propriate form the series for Φi, 1 and Φi, 2 from formulas (103) and (93), respective-ly:
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In the combined form, the exact solutions of this problem (for Pn, 1 - (100) and for Pn, 2 - (90)) will look like this:

Hollow Ball (Solution without using Bernoulli Numbers Bn)
Quasi-polynomials for solving the inverse non-stationary heat conduction problem when specifying the temperature boundary conditions 
on both boundary surfaces for a hollow ball in recurrent form are obtained from the solutions obtained for the inverse non-stationary 
heat conduction problem when specifying the boundary condition on the inner surface of the hollow ball, i.e. formulas (36) and (37). 
Solutions are obtained in the same way as for a flat plate (see 3.1.1) or for a hollow cylin-der (see 3.1.2). Quasi-polynomials Pn, 1 
and Pn, 2 for a hollow ball will be as follows:

For the first quasi-polynomials Р1,1 and Р2,1, Р1,2 and Р2,2, etc. for a hollow ball, you can write:
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Here it is convenient to introduce local notation, which is valid only for this section, in order to avoid discrepancies in the solution 
of the problem in the future:

In other words, the functions Fn, 1 and Fn, 2 within the framework of this section denote the quasi-polynomials Pn, 1 and Pn, 2 for 
the inverse nonstationary heat conduction problem when the boundary condition on the inner surface of the hollow ball is specified 
from formulas (36) and (37), respectively. First we solve the problem for Рn, 2, since it is simpler than for Рn, 1; the solution of the 
first problem will be taken as a basis for solving the second problem. We rewrite the anti-Laplacians P1,2 in the following form:

In order to obtain a recurrent solution to this problem, we rewrite the last expression as follows:

Where. Subsequent anti-Laplacians for quasi polynomials Рn, 2 will be as follows:

Hence, n-th degree anti-Laplacians for quasi-polynomials Рn, 2 can be written in the following form:

As can be seen from the formula (126), for its solution it is used as a “direct” recurrence, i.e. the use of the previous members of the 
series for the current member of a series, and “partial” recurrence, i.e. use in the output for the current member of a part of the same 
member of the series. Now the func-tion Φi, 2 should be determined. For this, a form should be formalized for them. Let us rewrite 
Eq. (122) for Φ1,2 in the form typical for larger values of the parameter i, namely:

Volume 1(2): 12-16



Citation: Lobanov Igor Evgenievich (2020) Exact Analytical Solutions for a Nonstationary Linear Inverse Problem of Heat Conduction for Bodies of One-Dimensional 
Geometry with Boundary Conditions on One Surface, as Well as on Two Surfaces for a Plane Body, a Cold Cylinder and a Hollow Sphere, Obtained in a Closed 
Recurrent Form. Journal of Material Sciences & Manufacturing Research. SRC/JMSMR-106. DOI: doi.org/10.47363/JMSMR/2020(1)105

J Mater Sci Manufac Res 2020

For the expression Φ1,2 from formula (127) to be identically equal to its definition from (122), it is necessary (since F0,2= 1 - 1 / 
ρ) so that:

After the last formalization, we can write a closed expression for Φi, 2:

Thus, expressions (126), (129), (128) give an exact solution to the quasi-polynomial problem for solving the inverse non-stationary 
heat conduction problem when setting the temperature boundary conditions on both boundary surfaces for a hollow ball in a recurrent 
form. As can be seen, in the solution for the functions Φi, 2formally, terms with are present. Obviously, all these terms are absent, 
for example, in (121) - (126). This is quite natural, since in the accepted representation (93) for Φi, 2 these terms are fictitious and 
equal (since) to zero: In the solution for Pn, 2 (126), there are no terms with Φ0.2, but there are terms with F0.2. The solution for Φi, 
2 (129) lacks terms with F0,2, but formally there are terms with identically equal to zero. Now it is necessary to obtain a solution 
for the quasi-polynomials Pn, 1, using the above solution method and based on the already available solutions for Pn, 2, Fn, 1, Fn, 

2. It’s obvious that:

Addition (108) and (109) for the first terms gives the following expression:

In order to obtain an expression for Рn, 1 for a recurrent solution of this problem, we rewrite the last expression in the same way as 
when solving for quasi-polynomials Рn, 2, namely:

Where. Subsequent anti-Laplacians for quasi-polynomials Рn, 1 will be as follows:Φ1,1 = F1,1

Hence, n-th degree anti-Laplacians for quasi-polynomials Рn, 1 can be written in the following form:
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Now the function Φi, 1 should be determined. For this, a form should be formalized for them. Let us rewrite Eq. (132) for Φ1,1 in a 
form typical for larger values of the parameter i, namely:

For the expression Φ1,1 from formula (137) to be identically equal to its definition from (132), it is necessary (since F0,2= 1 - 1 / 
ρ) so that:

After the last formalization, we can write a closed expression for Φi, 1:

Thus, expressions (136), (139), (138) give an exact solution to the quasi-polynomial problem for solving the inverse non-stationary 
heat conduction problem when setting the temperature boundary conditions on both boundary surfaces for a hollow ball in a recurrent 
form. As can be seen, in the solution for the functions Φi,1formally, terms with are present. Obviously, all these terms are absent, 
for example, in (131) - (139). This is quite natural, since in the accepted representation (139) for Φi, 1 these terms are fictitious and 
equal (since) to zero: In the solution for Рn, 1 (136) there are no terms with Φ0.1, but there are terms with F0.2. The solution for Φi, 
1 (139) lacks terms with F0,2, but formally there are terms with identically zero. In principle, the problem of the exact solution of 
quasi-polynomials Pn, 2 - (126), (129), (128) - and Pn, 1 - (136), (139), (138) - for the inverse non-stationary heat conduction problem 
when setting the temperature boundary conditions on both boundary surfaces for a hollow ball in recurrent form can be completed. 
However, it is possible to write these solutions in a combined form, for which it is necessary to rewrite the series for Φi, 1 and

In the combined form, the exact solutions of this problem (for Pn, 1 - (136) and for Pn, 2 - (126)) will look like this:

Solutions in a Recurrent Form for a Nonstationary Linear Inverse Heat Conduction Problem for Flat Plates and Hollow Balls 
(Bodies of One-Dimensional Geometry) with Boundary Temperature Conditions on Both Surfaces using Bernoulli Numbers
IN In Sections 3.1.1 and 3.1.3, solutions were obtained in recurrent form for the nonstationary linear inverse problem of heat conduc-
tion for flat plates and hollow balls, i.e. bodies of one-dimensional geometry, with boundary temperature conditions on both surfaces 
using the method of mathematical induction without using Bernoulli numbers Bn. This section poses the problem of obtaining recur-
rent solutions using the Bernoulli numbers Bn.

Flat Plate (Solution using Bernoulli Numbers Bn)
In 3.1.1, the quasi-polynomials Pn, 1 and Pn, 2 were solved for a flat plate: (40) - (50). Therefore, using the method of mathemati-
cal induction, one can write quasi-polynomials for solving the inverse non-stationary heat conduction problem when setting the 
temperature boundary conditions on both boundary surfaces for a flat plate in recurrent form when using Bernoulli numbers Bn:
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Where Bn are Bernoulli numbers: (is the binomial coefficient; the number of combinations from N to K) [25]. For example, the first 
few Bernoulli numbers are equal: B0 = 1; B1 = –1 / 2; B2 = 1/6; B3 = 0; B4 = –1 / 30; B5 = 0; B6 = 1/42; B7 = 0; B8 = –1 / 30; B9 
= 0; B10 = 5/66; B11 = 0; B12 = -691 / 2730; B13 = 0; B14 = 7/6; B15 = 0; B16 = -3617 / 510; B17 = 0; B18 = 43867/798; B19 = 

0; B20 = –174611 / 330 ...

For the last quasi-polynomial Рn, 2, one can rearrange and write it in the following form:

Hollow Ball (Solution using Bernoulli Numbers Bn)
In 3.1.3, quasi-polynomials Pn, 1 and Pn, 2 were obtained for a hollow ball: (108) - (118). Therefore, using the method of mathematical 
induction, it is possible to write quasi-polynomials for solving the inverse non-stationary heat conduction problem when setting the 
temperature boundary conditions on both boundary surfaces for a hollow ball in recurrent form when using Bernoulli numbers Bn:

For the given unsteady temperature boundary conditions on both surfaces Θn, 1 and Θn, 2, the re-currence relations are:

Conclusions
1.	 The relevance of the problem of solving the inverse lin-

ear non-stationary problem of heat conduction of a one-
dimensional geometric shape, obtained in this work in a 
closed recurrent form, lies in the fact that it is possible with 
a sufficient degree of accuracy to reconstruct the boundary 
conditions from the measurements of the heat flow sensor.

2.	 In this paper, we obtain exact analytical solutions for a nonsta-

tionary linear inverse problem of heat conduction for bodies 
of one-dimensional geometry with boundary conditions on 
one surface, as well as on two surfaces for a flat body and 
hollow cylinders and spheres, obtained in recurrent form. The 
solutions under the boundary conditions on two surfaces for 
a plane body and for a hollow ball were obtained both with 
and without the use of Bernoulli numbers.

3.	 The recurrent form of writing the solution of the non-station-

Volume 1(2): 15-16



Citation: Lobanov Igor Evgenievich (2020) Exact Analytical Solutions for a Nonstationary Linear Inverse Problem of Heat Conduction for Bodies of One-Dimensional 
Geometry with Boundary Conditions on One Surface, as Well as on Two Surfaces for a Plane Body, a Cold Cylinder and a Hollow Sphere, Obtained in a Closed 
Recurrent Form. Journal of Material Sciences & Manufacturing Research. SRC/JMSMR-106. DOI: doi.org/10.47363/JMSMR/2020(1)105

J Mater Sci Manufac Res 2020 Volume 1(2): 16-16

Copyright: ©2020 Lobanov Igor Evgenievich. This is an open-access article 
distributed under the terms of the Creative Commons Attribution License, 
which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original author and source are credited.

ary linear inverse problem of heat conduction obtained in the 
work for bodies of one-dimensional geometry with boundary 
conditions on one surface, as well as on two surfaces for a 
flat body, a hollow cylinder and a hollow sphere, is a solu-
tion in a closed form from a single position, that not always 
explicitly possible.

4.	 From a practical point of view, the solutions obtained can be 
used to calculate nonstationary fields of temperatures and heat 
flux densities for various materials used in aviation and rocket 
and space technology, based on the measured nonstationary 
boundary conditions on one of the sides, as well as on two 
surfaces for flat body, hollow cylinder and hollow sphere.
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