
J Ear Environ Sci Res, 2022                      Volume 4(5): 1-7

Research Article Open    Access

Evaluating the Use of a Contextual Information Extraction Technique 
to Identify Mineralized Zones in a Semi-Arid Environment from 
Aster Satellite Data 

1Geoscience and Digital Earth Centre (INSTeG), Research Institute for Sustainable Environment, Universiti Teknologi Malaysia, 81310 UTM, Johor Bahru, Ma-
laysia

2Faculty of Built Environment and Surveying,  Universiti Teknologi Malaysia, 81310 UTM, Johor Bahru, Malaysia

3Waziri Umaru Federal Polytechnic, P.M.B. 1034, Birnin Kebbi, Kebbi State Nigeria

4Institute of Oceanography and Environment (INOS), University Malaysia Terengganu (UMT), Kuala Nerus 21030, Terengganu, Malaysia

5The Federal Polytechnic Nasarawa, Nasarawa State, Nigeria

Danboyi Joseph Amusuk1,2,3, Chindo Musa Muhammad1,2,5, Mazlan Hashim1,2 * and Amin Beiranvand Pour4

*Corresponding author
Mazlan Hashim, Geoscience and Digital Earth Centre (INSTeG), Research Institute for Sustainable Environment, Universiti Teknologi Malaysia, 
Johor Bahru, Skudai 81310, Malaysia. E-mail: mazlanhashim@utm.my

Received: October 02, 2022; Accepted: October 06, 2022; Published: October 12, 2022

Journal of Earth and Environmental 
Sciences Research

Keywords: Mineral mapping, Rule-Based Feature Extraction, ASTER, Semi-arid, Jos Plateau  

Introduction
Remote sensing satellite system and the images derived from them have been making an unprecedented contribution to geological 
resource mapping, which includes structural, lithological, hydrothermal alteration zones and individual mineral categories. A variety 
of sensor data exists which are multispectral, superspectral, and hyperspectral, and every considerable effort made with them in the 
research circle is to apply them for information extraction [1-7]. Formerly, photographic products were used before the satellite sensing 
data began to be used in research. Human photo-interpretation was the main activity in data mining from photographic products at 
the time, and specialised keys often referred to as interpretation keys that define features with credibility were in use. Within these 
elements are three that belonged to the contextual cues, which were very important for information extraction in the exploitation of 
photographic data. The categories of the contextual information are illustrated in Figure 1.
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ABSTRACT
Identification of regions of mineralization by traditional techniques where spectral information of pixel alone is applied during classification, either at 
pixel or sub-pixel level, is usually accompanied by some level of un-satisfaction. Impulse noises that are usually experienced in digital images from sudden 
sharp disturbances in the signal degrade the output. This effect often referred to as the salt and pepper noise could further cause information loss, and 
change the colour of an RGB image. The use of filters (median and morphological) has not totally eliminated the effects. Object-based methods came in 
with higher filter smoothers to make it better yet, there is potential limitation because of possible negative impact of under segmentation. The errors of 
under-segmentation cannot be adjusted within a unit of features, which apparently affect the potential accuracy of the entire classification. Thus, this study 
evaluates the contribution of the contextual information to reduce the effects of noise in the data for effective mineral identification. Rule-based technique 
was applied for information extraction from a threshold values derived from band ratio (BR) transformation operations on ASTER data. The result indicates 
clay has the highest mineral density of 47% in the study area, with silicate having the least (3%), among others. This study provides a robust test for contextual 
cues as anticipated to be most effective and shall contribute towards reducing environmental impacts and protecting biodiversity which is one of the major 
aspects of sustainable development in relation to mining and mineral processing.
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Figure 1: The typology of contextual information classification

The applications of photographic products are still active, with 
so much use in the MYCIN expert system, and the issues of 
the contextual information play an active participation [8-10]. 
Nevertheless, with the advent of satellite data, which comes in digital 
format, the methods of processing and extraction of information 
from them have been by the use of computers and algorithms. 
Every method and the algorithms applied then, have their kinds of 
limitation and thus, undergo constant developments and upgrade. 
One of such is bringing forward the contextual information into the 
digital image processing because of their advantages.

The use of satellite remote sensing data applies to several areas 
of the geoscience domain, some of which are continuous data 
categories [11,12] while others are not. The remote sensing 
processing and classification began with the spectral mapping 
technique, which has been very popular and vastly applied in the 
research world. The spectral method used to provide the means 
for fast and easy processing with many developed algorithms 
applying the principle [13]. This has found application extensively 
in addition to development with multi-spectral, super-spectral 
and hyperspectral data in many areas, including lithological and 
mineral mapping. A choice is always made on the algorithm type, 
perhaps such that accommodates training or not (i.e., supervised 
or unsupervised), which are further classified according to the 
underlying statistical assumptions regarded as parametric or non-
parametric, and further by the basis of the elements called per-
pixel, and sub-pixel [14]. So much literature reveals an extensive 
use of the spectral mapping technique for lithology and mineral 
exploration mapping, either at pixel or more recently at sub-
pixel domain [15-19]. Problems associated with these techniques 
include the statistical assumption that each pixel is a representative 
of ground sampled area supposedly with a single feature type, 
whereas in reality, this is rarely the truth, such that a pixel may 
contain mixtures of different surface materials. These variations 

are called noises in classification as some are poor representative 
of the actual and so are related to neighbouring pixels, which of 
course, would result in significant intra-class spectral variations 
[19].

The sub-pixel approach was meant to overcome the erroneous 
representation and provided a degree of multiple membership to 
a single pixel and neighbourhood. The developed algorithms to 
handle the sub or mixed pixel issues are generally said to operate 
in spectral unmixing techniques and analysis, in which they go 
through and deconvolvement of the pixel spectra and quantifies 
the fractional abundances called end members of the relative 
constituents to surface materials in their variations [20,21]. But, 
to have a good representation of this requires prior knowledge of 
all features in a data, including unmixing results, which makes 
it difficult to achieve [22]. So many studies have been carried 
out using sub-pixel approach in un-mixing spectral processing 
in arid and semi-arid regions, characterised by largely bareness 
[18,23,24].

Recent advances in classification techniques have led to a paradigm 
shift in many fields, from the classical pixel-based approach to 
instead focusing on image objects [25]. The object-based image 
analysis (OBIA) approach, also commonly referred to as geographic 
object-based image analysis (GEOBIA), does not classify 
individual pixels of the data but rather performs segmentation 
of the entire image and then uses the information to classify the 
segments. The segmentation creates homogeneous clusters (i.e., 
objects) by grouping contiguous pixels that are relatively similar 
in terms of both their spectral and spatial characteristics [26]. 
Grouping pixels enables contextual (neighbourhood) information 
to be incorporated and thus results in the creation of image objects 
that represent “meaningful” entities (e.g., buildings, trees, fields, 
or perhaps even rock outcrops) in an image [25].
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The OBIA approach creates two kinds of advantages; it makes the classification unit to become large with the movement from pixel 
to objects, and removing the within class variations in the spectral domain, and secondly, it has capacity to remove the impulse 
noises [27,28]. Image objects therefore have additional spectral (e.g., mean, median, minimum and maximum band values, band 
variance) and spatial attributes (e.g., shape, size, association with neighbouring objects) in comparison to individual pixels, which are 
limited. Consequently, OBIA has been used extensively for a variety of applications, including forestry, habitat mapping, land use/
land cover mapping, landform mapping and change detection, with numerous studies reporting that higher classification accuracies 
can be achieved through the OBIA approach in comparison to pixel-based approaches [29-38].

Despite seemingly having the potential to eradicate the issues associated with pixel-based approaches, the application of OBIA to 
mineral mapping has received minimal attention. Preliminary studies have been carried out by and were able to distinguish between 
lithological units respectively, through segmentation of spectral satellite imagery. More recently, OBIA has been employed to map 
volcanic units and landforms on active volcanoes in Indonesia, and same approach was made to delineate a region of geology that 
is controlled by vegetation of various kinds in the South-African Kruger National Park [39-43]. However, the potential benefit of 
employing OBIA over pixel-based classification approaches for mineral mapping is yet to be realised. This study therefore aims at 
making a contribution through the use of the contextual information in the data to address the missing link by evaluating the capability 
of a contextual element approach for producing detailed mineral mapping with accurately defined contacts for the Jos Plateau area 
of Nigeria. Accordingly, this study provides a robust test for contextual cues as anticipated to be most effective and shall contribute 
towards reducing environmental impacts and protecting biodiversity, which is one of the major aspects of sustainable development in 
relation to mining and mineral processing identified by the International Council on Mining & Metals (ICMM), the World Economic 
Forum (WEF), and the World Coal Association (WCA) as needing focus for sustainability of the mining industry since this approach 
will narrow search activities to only the most probable regions of minerals deposits [44].

Material and Method
Study area
Plateau state lies between 100 30’ and 090 00’ N to 090 30’ and 080 30’ E, and approximately covers 6700 km2 in the north central 
part of Nigeria as depicted in Figure 2 [45]. The geologic setting potentially reveals the area as an environment with vast deposits 
of tin mineralization because of ancient schists as well as gneiss granite rocks, which later were invaded by a newer category called 
younger granites. These new rocks came with rich tin and fluorine. There have also been signs of volcanic deposits which have 
preserved the older sedimentation and made alluvial beds to keep forming by the actions of river flows and erosion activities. The 
region is thus a potential rich area for a variety of mineral resource types that are associated with the rock types. Figure 3 presents 
the geologic map of the area.

Figure 2: The map of Plateau state in Nigeria from Lee, 1972

Remote Sensing Data
The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) multi- spectral remote sensing data was the main data
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Figure 3: Geologic map of Plateau state

Utilised for the prospecting of mineral resources in the Jos Plateau, north central Nigeria. ASTER has 14 bands with unique features 
that are capable of recording and monitoring the earth’s surface features and producing stereo imagery that could be used in the 
creation of digital terrain models. It has three components form: the visible near infrared (VNIR), shortwave infrared (SWIR), and the 
thermal infrared (TIR) (Figure 4). All these sub-systems work together to help in the success of the products that the sensor produces, 
as shown in Table 1, which summarises the technical details of its performance and the attributes that were used to discriminate the 
regions of alteration zones for regional mapping of the area of study.

Table 1: Summary of ASTER technical detail and attributes
Subsystem Band No. Spectral Range (um) Spatial Resolution (m) Quantization levels

VNIR 1 0.52-0.60 15 8 bits
2 0.63-0.69 15 8 bits

3N 0.78-0.86 15 8 bits
3B 0.78-0.86 15 8 bits

SWIR 4 1.60-1.70 30 8 bits
5 2.145-2.185 30 8 bits
6 2.185-2.225 30 8 bits
7 2.235-2.285 30 8 bits
8 2.295-2.365 30 8 bits
9 2.360-2.430 30 8 bits

TIR 10 8.125-8.475 90 12 bits
11 8.475-8.825 90 12 bits
12 8.925-9.275 90 12 bits
13 10.25-10.95 90 12 bits
14 10.95-11.65 90 12 bits

Figure 4: Operational wavelengths of ASTER multispectral sensor
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Method
The Image Processing of the ASTER Data
The processing of ASTER data involves atmospheric, crosstalk, 
radiometric and enhancement. These were performed to provide 
room for feature extraction.

Band Ratioing Technique
The use of band ratios enhances the differences that exist between 
the individual bands as well as reduces the effects of topographic 
elevation and shadow cast. The basic process is the division of 
one band over another to produce a fresh image that reveals the 
relative intensity of the bands involved. Each mineral type has 
specific bands that are effective for identifying them as depicted 
in Table 2.

Table 2: Band ratios for mineral exploration
Objects Landsat 8 ASTER L1T Sentinel-2A
Ferric Iron Fe3+ 4/3 2/1 4/3
Ferrous Iron 
Fe2+

7/5 +3/4 5/3 + 1/2 12/8+3/4

Ferric oxides - 4/3 11/8
Gossan 6/4 4/2 11/4
All iron oxides 4/2 2/1 4/2
Laterite - 4/5 11/12A
Carbonate/
chlorite/

- 7+9/8 -

Epidote/ 
chlorite/
Amphibole

- (6+9)/(7+8) -

Dolomite - 6+8/7 -
Silicates-
sericites/
Muscovites/ 
illite

- 5+7/6 - 

Kaolinite/
Alunite

- 4+6/5

Muscovites - 7/6 -
Clay - 5x7/6x6  
Alterations 6/7 4/5 11/12A
Host rock - 5/6 -
NDV1 5-4/5+4 3-2/3+2 8-4/8+4

The processing methodology of the multispectral images in this 
study is summarized in Figure 5. After pre-processing, the mapping 
of the individual mineral types was carried out using the band 
ratio transformation technique. The values for each combination 
were computed, and applied in the development of rules that were 
fired in the algorithm as depicted in Figure 5.

Segmentation
This is the step that is very critical for the feature extraction 
where the objects are clustered in their homogeneous nature into 
groups. These clusters have contiguous pixels and are regarded 
to contain similar characteristics. The procedure undertook multi-
scaled process which is embedded in the ENVI 5.3 software. 
The workflow begins with the threshold values for individual 
rule and goes through sequential clustering of the spectral values 
throughout the data. This scales up the spatial variability that 
determines the scale of each cluster. Figure 6 presents the results 
of the segmentation.

Figure 5: the rule-based creation fired for mineral extraction

Figure 6: Result of segmentation process

Classification
Following the segmentation, the results are saved in a shapefile 
and an automatically developed attribute table was saved in excel 
format. These attributes built contain all the information about the 
spectral, spatial, and contextual information for all the mineral 
features in the image. These were accessed in ArcGIS and applied 
for the thematic mapping of the individual mineralization as 
presented in Figure 7.

Figure 8 depict the percentage quantity of each mineral density. 
Clay has the largest mineral density of 47%, whereas silicate has the 
least (3%). Carbonate and quartz have 4% each, montmorillonite 
and Alunite with 5% each, Kaolinite 6%, granite 7%, iron oxide 
9% and mafic 10%.  Figure 9 presents the spatial distribution of 
all the minerals.
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Figure 7: The thematic mapping of the individual mineral 
distribution throughout the study

Figure 8: Quantitative representation of the individual mineral 
density

Figure 9: Individual mineral distribution in a GIS environment

Conclusion
Comprehensive mineral prospecting over the entire study area is 
for the first time achieved with the help of this approach. The use 
of band ratio transformation for mineralogy is not new, but in this 
case was to create a threshold for individual mineral types which 
were fed into the workflow for segmentation and classification. 
This operation is the state-of-the-art in data mining in recent times, 
as suggested by many researchers that exploitation of contextual 
information in addition to other methods could enhance the output 
of classification. The algorithm performs segmentation first and 

then builds an attribute table that consists of the spectral, spatial, 
and contextual information for thematic display. The classification 
is then undertaken and saved in vector format as a shape file so that 
further operations like symbolization can be added to the thematic 
information. This approach can be applied universally to any kind 
of feature that need to be extracted. Nevertheless, this will depend 
on the rules built, the scale selected for the spatial content and the 
edge detection classifier. Despite that this study was carried out 
at greenfield state, with ASTER data, any sensor data could be 
applied to brownfield surveys provided the rule-based system is 
maintained. Nonetheless, by producing detailed greenfield maps 
with accuracy, this will serve as reference material for small scale 
and district-scaled mapping.
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