
Open Access

Journal of Mathematical &
Computer Applications

ISSN: 2754-6705

J Mathe & Comp Appli, 2024 Volume 3(1): 1-4

Review Article

Establishing Dependencies between Multiple DAGs in Apache
Airflow: Coordinating Complex Workflows

USA

Pankaj Dureja

*Corresponding author
Pankaj Dureja, USA.

Received: February 12, 2024; Accepted: February 19, 2024, Published: February 26, 2024

Keywords: Apache Airflow, DAG Dependencies, Cross-DAG
Dependencies, Workflow Automation, External Task Sensor,
Trigger Dag Run Operator, My SQL Tracking, Data Pipelines,
Task Scheduling

Introduction
With the rise of data-driven organizations, Apache Airflow has
made it a go-to tool to orchestrate complex workflows. This is
where Airflow comes in, with the capability to script, schedule,
and visualize all parts of workflow it lends itself to orchestrating
arduously detailed data processing pipelines. In Airflow, every
workflow is a Directed Acyclic Graph (DAG) where every node
is a task, and the edges define the dependencies between tasks.
Although Airflow is good at managing tasks inside a single DAG,
in reality, need dependencies between multiple DAGs to deal with
more complex and intertwined processes.

Many data-driven environment of works are not sitting as silos.
Rather, they are a part of a bigger system where completion of
one workflow would kick off another. So, with the above pattern,
there are separate DAGs for extract, transform and load in an
ETL process. In order to get these DAGs working together it is
also needed to set up dependencies across these DAGs to make
sure each step is executed in the right order. It does information
co-ordination is essential to maintain data integrity for fast access
to data.

To enforce this global scheduling constraint, we need to rely on
cross-DAG dependencies to make sure that the DAGs get executed
in the correct order, cooperate in a proper way and, thus, optimize
the entire operations and reliability. Workflows may break up when
dependencies in the software are not maintained, this may cause
errors, delays, and other inefficiencies. E.g., if a data loading DAG
starts before the data transformation DAG completes, it might also

load incomplete/incorrect data into the target system. Therefore,
handling these dependencies is critical to data processing with
ease and without errors.

In this paper, we explore methods, and operators that can be
used to handle dependencies among multiple DAGs in Airflow.
From common methods like the ExternalTaskSensor and
TriggerDagRunOperator, to more ad hoc approaches such as
databases to monitor dependencies and control running workflows.
In this article, we hope to cover these approaches, and compile a
guide on how to orchestrate complex workflows that span multiple
DAGs from running seamlessly and efficiently.

Problem Statement
Managing dependencies within a single DAG in Airflow is
straightforward, but coordinating tasks across multiple DAGs
presents several challenges. Without proper mechanisms to
establish and manage these dependencies, workflows can
become disjointed, leading to errors, delays, and inefficiencies.
Organizations need a comprehensive solution that allows for
seamless integration and synchronization of tasks across different
DAGs. The absence of such a solution can result in fragmented
workflows, increased manual intervention, and difficulties in
troubleshooting and maintaining the data pipelines.

Solution Implemented
To address these challenges, this paper implements a solution using
various operators and customized approaches in Apache Airflow:
1. ExternalTaskSensor: This operator waits for a task in an
external DAG to complete before proceeding.
Following library needs to imported in the DAG:
from airflow.sensors.external_task_sensor import
ExternalTaskSensor
In the below python implementation of DAG, wait_for_

ABSTRACT
It covers a guiding light on approaches and resolutions for managing dependencies amongst multiple Directed Acyclic Graphs (DAGs) in Apache Airflow
(a trending work automation tool). Cross-DAG dependencies is one of the crucial requirement for to manage the very complex workflow which can span in
different processes and different systems. Through this research we implement basic operators including ExternalTaskSensor and TriggerDagRunOperator,
custom solutions like using MySQL DB table to keep track of running DAGs. This study demonstrates the pros, possible bespoke solutions and implications
of these solutions for optimizing workflow automation through Apache Airflow. The paper concludes by providing an analysis of how well DAG dependency
management is done in Airflow and provides possible roadmap.

Citation: Pankaj Dureja (2024) Establishing Dependencies between Multiple DAGs in Apache Airflow: Coordinating Complex Workflows. Journal of Mathematical
& Computer Applications. SRC/JMCA-208. DOI: doi.org/10.47363/JMCA/2024(2)173

J Mathe & Comp Appli, 2024 Volume 3(1): 2-4

transform_data task will run when transorm_data task will be completed in external data_extraction_transformation_dag.

Use Case: Ensuring that a data processing task in DAG A only starts after a data extraction task in DAG B is complete.

Drawback of External Task Sensor Operator
The ExternalTaskSensor Operator may encounter issues in a distributed setup with multiple Celery nodes, as it relies on the metadata
database for task status, leading to potential synchronization problems if different nodes are not properly synced.

2. TriggerDagRunOperator: This operator triggers another DAG run in the chain.
Following library needs to imported in the DAG:
from airflow.operators.dagrun_operator import TriggerDagRunOperator

In the below python implementation of DAG, external dag trigger_production_load_complete_dag will be executed once
combined_count_email_task completes within the DAG.

Use Case: Automatically starting DAG B once a critical task in DAG A is completed.

Citation: Pankaj Dureja (2024) Establishing Dependencies between Multiple DAGs in Apache Airflow: Coordinating Complex Workflows. Journal of Mathematical
& Computer Applications. SRC/JMCA-208. DOI: doi.org/10.47363/JMCA/2024(2)173

J Mathe & Comp Appli, 2024 Volume 3(1): 3-4

Drawback of External Task Sensor Operator
The TriggerDagRunOperator does not wait for the triggered DAG to complete before moving on to the next task. For instance, in
the following line of Python code, There are two external DAGs to be triggered: `trigger_production_load_complete_dag` and
`trigger_production_load_aggregate_dag`.

last_task >> combined_count_and_email_task >> send_email_task >> trigger_production_load_complete_dag >> trigger_
production_load_aggregate_dag >> end

The TriggerDagRunOperator triggers `trigger_production_load_complete_dag` and then immediately proceeds to trigger `trigger_
production_load_aggregate_dag` without waiting for the first DAG to complete.

3. Custom MySQL Table & Procedure for DAG Status: In order to solve the problem of ExternalTaskSensor and TriggerDagRunOperator,
a custom solution where a MySQL table is used to update the running status of a DAG. Other DAGs query this table to check if a
specific DAG is running, using stored procedures to manage the checks.
Following library needs to imported in the DAG:
from airflow.providers.mysql.operators.mysql import MySqlOperator

MySQL Table

MySQL Proceudure

Citation: Pankaj Dureja (2024) Establishing Dependencies between Multiple DAGs in Apache Airflow: Coordinating Complex Workflows. Journal of Mathematical
& Computer Applications. SRC/JMCA-208. DOI: doi.org/10.47363/JMCA/2024(2)173

J Mathe & Comp Appli, 2024 Volume 3(1): 4-4

Copyright: ©2024 Pankaj Dureja. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Python Implementation
Using MySQL Hook, dependencies can be checked, and if the DAG is already running, the waiting DAG can enter sleep mode for
2 minutes until the condition is satisfied.

Use Case: A DAG updates its status in a MySQL table upon start and completion. Other DAGs query this table using a stored
procedure to check the status, sleeping for 2 minutes before rechecking if the desired status is not yet achieved.

Potential Extended Use Cases
The solutions for managing dependencies between multiple DAGs
in Airflow can be extended to various other scenarios:
1. Complex ETL Pipelines: Coordinating different stages of

ETL processes across multiple DAGs, where each stage is
a separate DAG.

2. Microservices Orchestration: Managing workflows in a
microservices architecture where each service is represented
by a separate DAG.

3. Batch Processing and Real-time Processing Integration:
Ensuring that batch processing tasks are aligned with real-
time data processing tasks.

Impact
The implementation of these solutions has a significant impact
on the efficiency and reliability of workflows involving multiple
DAGs. Airflow takes care of this coordination instead of saying
"run this workflow, then this workflow, etc," using Airflow can
establish cross-DAG dependencies, ensuring that workflows are
run in the correct order with minimal manual intervention. As a
result, workflow get minimal error, better task synchronization,
and resource utilization. Increased visibility and control of the
entire workflow allows for greater operational efficiency and ease
of troubleshooting and maintaining the data pipelines.

Scope
The purpose of this paper is to dig into creating and managing
DAG Dependencies between multiple DAGs in Apache Airflow.
While the article does not go much into the advanced topics like
Airflow architecture optimization or security considerations, it
covers the implementation details, benefits and some potential use
cases. In any event, future research will likely explore these other
dimensions as well, in order to arrive at a more complete elasticity
picture of how Airflow handles sophisticated workflows [1-5].

Conclusion
DAG dependencies are important to manage workflows across
different processes as we can create multiple DAGs to represent
different steps in our process. The operators, as well as the custom
solutions presented in this paper, for example, ExternalTaskSensor,
TriggerDagRunOperator, the DAG status tracking in MySQL
table, supports easy DAG coordination, and guarantees workflow
execution. Through these solutions, enterprises can establish deep
automation, enhance task scheduling and streamline workflows.
This aspect signifies the talent and applicability of these techniques
across diverse domains and the promise of future extended use
cases that might be uncovered.

References
1. Maxime Beauchemin (2021) The Apache Airflow Book,

O'Reilly Media 45-70.
2. Anirudh Kala (2020) Apache Airflow: A Real-World Guide

to Data Pipelines. Packt Publishing 115-140.
3. Wes McKinney (2017) Python for Data Analysis. O'Reilly

Media 220-245.
4. Apache Airflow Operators https://airflow.apache.org/docs/

apache-airflow/stable/core-concepts/operators.html.
5. Airflow Operators https://www.astronomer.io/docs/learn/

what-is-an-operator.

