
J Arti Inte & Cloud Comp, 2022 Volume 1(4): 1-4

Review Article Open Access

Enhancing Software Security through Automation in the Software
Development Lifecycle

Leading Technology Organization, SF Bay Area, US

Vandana Sharma

Journal of Artificial Intelligence &
Cloud Computing

*Corresponding author
Vandana Sharma, Leading Technology Organization, SF Bay Area, US.

Received: November 08, 2022; Accepted: November 16, 2022; Published: November 24, 2022

Introduction
The increasing complexity and interconnectedness of modern
software applications demand a heightened focus on security.
Cyber threats continue to grow in sophistication, underscoring
the importance of integrating security measures seamlessly into
the Software Development Lifecycle (SDLC). This article aims
to unravel the significance of security automation in fortifying
software applications against potential vulnerabilities and attacks.

As software development practices evolve, so do the methodologies
for identifying and addressing security concerns. Traditional
approaches relying solely on manual assessments are proving
inadequate in the face of dynamic cyber threats. Security
automation emerges as a pivotal solution, introducing a proactive
and continuous security mindset throughout the entire SDLC.

From the inception of code to the deployment of a software
product, each phase presents unique challenges and opportunities
for security enhancement. In this exploration, we will dissect the
key components of security automation, elucidating their roles
in ensuring the integrity and resilience of software applications.
By understanding and implementing these automated security
measures, software professionals can not only reduce the risk
of security breaches but also cultivate a proactive and security-
conscious ethos within their development teams. The journey
begins by comprehending the need for security automation and
extends to the integration of advanced tools and practices at every
stage of the SDLC.

Key Components of Security Automation
Static Application Security Testing (SAST)
Static Application Security Testing (SAST) is a white-box testing
method that analyzes the source code or compiled bytecode of
an application without executing it. SAST tools examine the

application’s codebase to identify security vulnerabilities, coding
errors, and potential weaknesses.

How It Works
Source Code Analysis
SAST tools analyze the source code directly, looking for patterns
and vulnerabilities within the codebase.

Rule-Based Detection
These tools use predefined rules to identify common security
issues, such as SQL injection, cross-site scripting (XSS), and
insecure coding practices.
Early Detection
SAST provides early detection of vulnerabilities during the
development phase, allowing developers to address issues before
the code is deployed.

Popular SAST Tools
•	 Checkmarx
•	 Fortify
•	 Veracode

Dynamic Application Security Testing (DAST)
Dynamic Application Security Testing (DAST) is a black-
box testing method that assesses the running application for
vulnerabilities by simulating real-world attacks. DAST tools
analyze applications in their operational state, providing insights
into runtime vulnerabilities.

How It Works
Simulated Attacks
SAST tools analyze the source code directly, looking for patterns
and vulnerabilities within the codebase.

ISSN: 2754-6659

ABSTRACT
In the rapidly evolving landscape of software development, ensuring robust security measures is paramount to safeguard against an ever-expanding
array of cyber threats. This article explores the critical role of security automation in fortifying software security throughout the Software Development
Lifecycle (SDLC). From the early stages of code development to the deployment and post-deployment phases, we delve into key components of security
automation, shedding light on how they contribute to a proactive and comprehensive approach to software security. By understanding and implementing
these automated security measures, developers and organizations can bolster their defenses, mitigate vulnerabilities, and cultivate a security-centric culture
within their development teams.

Citation: Vandana Sharma (2022) Enhancing Software Security through Automation in the Software Development Lifecycle. Journal of Artificial Intelligence & Cloud
Computing. SRC/JAICC-184. DOI: doi.org/10.47363/JAICC/2022(1)169

J Arti Inte & Cloud Comp, 2022 Volume 1(4): 2-4

Runtime Analysis
Unlike SAST, DAST tools focus on the application’s behavior
during runtime, detecting vulnerabilities that may not be apparent
in the source code.

Real-World Simulation
DAST tools mimic real-world attack scenarios, helping developers
understand how their applications respond to potential threats.

Popular DAST Tools
•	 OWASP ZAP (Zed Attack Proxy)
•	 Burp Suite

Dependency Scanning
Automated tools scan third-party dependencies for known
vulnerabilities. Integrating dependency scanning into the build
process ensures that developers are aware of potential security
risks associated with the libraries and components they use.

How It Works
Dependency Analysis
 Automated tools analyze the dependencies listed in a project,
checking against databases of known vulnerabilities.

Risk Assessment
The tool provides a risk assessment, flagging dependencies with
known vulnerabilities and suggesting updates or alternative
components may not be apparent in the source code.

Integration with Build Process
 Dependency scanning is often integrated into the build process,
preventing the inclusion of vulnerable dependencies in the final
application.

Benefits
•	 Mitigates the risk of using outdated or insecure third-party

components.
•	 Ensures the inclusion of only secure dependencies in the

software.

Security Orchestration, Automation, and Response (SOAR)
Security Orchestration, Automation, and Response (SOAR) is a
set of technologies and processes that enable security operations
teams to automate and streamline security incident response and
management.

Key Components
Orchestration
Coordinating and automating workflows and tasks related to
incident response.

Automation
Automating routine and repetitive security tasks to improve
efficiency.

Response
Providing a structured and coordinated response to security
incidents.

How It Works
Incident Triage
SOAR platforms automate the initial stages of incident triage,
categorizing and prioritizing security incidents.

Workflow Automation
Workflows are automated based on predefined playbooks, ensuring
consistent and efficient responses to incidents.

Integration with Security Tools
SOAR platforms integrate with various security tools, allowing
seamless information sharing and automated response actions.

Benefits
•	 Faster response to security incidents.
•	 Consistent and well-coordinated incident response processes.

Continuous Monitoring and Logging
Continuous monitoring involves real-time observation of a
system’s activities and behaviors, while logging captures and
stores relevant events and data for analysis.

Key Components
Monitoring Tools
Automated tools that continuously observe system activities for
anomalies.

Centralized Loggings
Storing logs centrally for easy analysis and correlation.

How It Works
Real-Time Monitoring
Monitoring tools detect deviations from normal system behavior,
triggering alerts for potential security incidents.

Log Collection
Centralized logging aggregates logs from various sources,
providing a comprehensive view of system activities.

Alerting
Automated alerts notify security teams of suspicious activities or
potential security breaches.

Benefits
•	 Early detection of security incidents.
•	 Comprehensive visibility into system activities for proactive

security measures.

Integrating Security Automation into the SDLC
Requirements and Design Phase
During the Requirements and Design phase, security considerations
should be embedded into the software’s foundational aspects.
Automated threat modeling tools can assist in identifying potential
security risks associated with the application’s architecture and
design.

Example/Code Snippet
ThreatModelingTool analyze --input DesignDocument.xml
--output ThreatModelReport.
html

In this example, a hypothetical ThreatModelingTool takes a design
document as input and generates a threat model report highlighting
potential security risks. This report can then be reviewed by the
development team to address security concerns at an early stage.

Code Development
Integrate Static Application Security Testing (SAST) tools into the
development environment to identify and rectify security issues as

Citation: Vandana Sharma (2022) Enhancing Software Security through Automation in the Software Development Lifecycle. Journal of Artificial Intelligence & Cloud
Computing. SRC/JAICC-184. DOI: doi.org/10.47363/JAICC/2022(1)169

J Arti Inte & Cloud Comp, 2022 Volume 1(4): 3-4

code is written. Automated code review tools can enforce security
coding standards.

Example/Code Snippet
Run SAST analysis using Checkmarx
checkmarx-cli scan --project MyProject --source-code /path/to/
source/code

Here, the checkmarx-cli command initiates a SAST scan on the
specified project, providing insights into potential vulnerabilities
and coding errors in the source code.

Build and Continuous Integration (CI)
Incorporate security scans into the CI pipeline to ensure that
every code change is assessed for security vulnerabilities before
deployment. Fail the build if critical security issues are detected.

Example/Code Snippet
Integration of SAST scan in a Jenkins pipeline stages:
- build
- security_scan
security_scan:
script:
- sast_tool scan --input /path/to/source/code

In this example YAML configuration for a Jenkins pipeline, a
security scan stage is added. The sast_tool command initiates a
security scan on the source code, and if critical issues are found,
the pipeline fails, preventing the deployment of insecure code.

Automated Testing
Implement Dynamic Application Security Testing (DAST) tools
and automated penetration testing as part of the testing phase.
These tools simulate real-world attacks, providing insights into
potential vulnerabilities.

Example/Code Snippet
Run automated penetration testing with OWASP ZAP zap-cli
--quick-scan --url http://my-application-url

Here, the OWASP ZAP CLI is used to perform a quick automated
scan on the specified application URL, simulating attacks and
identifying potential vulnerabilities.

Deployment and Release
Prioritize security in deployment scripts and automate security
checks before releasing the software to production.

Utilize deployment automation tools to ensure consistent and
secure deployment configurations.

Example/Code Snippet
Automated deployment script with security checks deploy tool,
deploy --config deployment_config.yaml

In this example, the deploy tool script automates the deployment
process using a configuration file deployment_config.yaml while
incorporating security checks to ensure that the deployment
adheres to predefined security configurations.

Post-Deployment Monitoring
Implement continuous monitoring and logging in production
environments. Automated tools can detect anomalies and potential

security incidents, triggering immediate responses or initiating
incident investigations.

Example/Code Snippet
Set up continuous monitoring with a logging tool monitoring_
tool configure --target production_server --alert-threshold 90%

Here, the monitoring tool is configured to continuously monitor a
production server, triggering alerts if system activities deviate by
more than 90 percent from the expected baseline. This automated
monitoring helps in the early detection of potential security
incidents.

By incorporating these examples and code snippets into the SDLC,
development teams can seamlessly integrate security automation
practices, fostering a proactive and secure approach to software
development. The specific tools and commands will vary based
on the chosen security solutions and the technologies used in the
development process.

Challenges and Best Practices
Integration Challenges
One significant challenge in security automation is integrating
security tools seamlessly into existing development workflows.
A disjointed integration can lead to inefficiencies and hinder the
effectiveness of automated security measures. Best Practices:

Tool Compatibility
Choose security tools that are compatible with popular CI/CD
platforms and version control systems.

Example
Jenkins pipeline integration with a compatible security tool
stages:
- build
- security_scan - deploy
security_scan:
script:
- compatible_security_tool scan --input /path/to/source/code

In this example, the compatible_security_tool is integrated into
a Jenkins pipeline, ensuring compatibility with the existing CI/
CD workflow.

False Positives
False positives, where security tools incorrectly identify non-
existent vulnerabilities, can lead to wasted time and resources if
not appropriately managed. Best Practices:

Fine-Tuning Rules
Regularly review and fine-tune the rules and configurations of
security tools to reduce false positives.

Clear Guidance
Provide developers with clear guidance on prioritizing and
resolving identified vulnerabilities.

Example
Configure security tool with reduced sensitivity security_tool
configure --sensitivity low

In this example, the sensitivity of the security tool is adjusted to
a lower level, reducing the likelihood of false positives.

Citation: Vandana Sharma (2022) Enhancing Software Security through Automation in the Software Development Lifecycle. Journal of Artificial Intelligence & Cloud
Computing. SRC/JAICC-184. DOI: doi.org/10.47363/JAICC/2022(1)169

J Arti Inte & Cloud Comp, 2022 Volume 1(4): 4-4

Copyright: ©2022 Vandana Sharma. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Education and Training
Ensuring that development teams are well-versed in security
practices is crucial for the success of security automation. Lack
of awareness and understanding can undermine the effectiveness
of automated security measures. Best Practices:

Ongoing Training
Provide ongoing security education and training to development
teams.

Documentation
Create and maintain documentation on security best practices and
how to address identified vulnerabilities.

Example
Schedule monthly security training sessions for development
teams schedule training --topic security_best_practices --frequency
monthly

In this example, a schedule is set up to conduct monthly training
sessions on security best practices for development teams.

Security automation, while immensely beneficial, comes with
its own set of challenges. By adopting best practices tailored to
these challenges, development teams can overcome obstacles and
fully realize the potential of automated security measures. These
best practices ensure that security is not an isolated aspect but an
integral part of the development process, enhancing the overall
security posture of software applications.

Conclusion
Security automation is a critical component of modern software
development. By integrating security measures into every
phase of the SDLC, organizations can build robust and resilient
software that withstands the challenges of an ever-evolving threat
landscape. Embracing security automation not only reduces the
risk of security breaches but also fosters a proactive security
culture within development teams, ultimately contributing to the
creation of more secure and reliable software [1-7].

References
1.	 For Static Application Security Testing (SAST): OWASP

(2021) Static Application Security Testing (SAST) https://
owasp.org/www-community/Static_Application_Security_
Testing.

2.	 For Dynamic Application Security Testing (DAST): OWASP
(2021) Dynamic Application Security Testing (DAST)
https://owasp.org/www-community/Dynamic_Application_
Security_ Testing.

3.	 For Continuous Monitoring and Logging: NIST (2021)
SP 800-137: Information Security Continuous Monitoring
(ISCM) for Federal Information Systems and Organizations
https://csrc.nist.gov/publications/detail/sp/800-137/final.

4.	 For Jenkins Pipeline Integration: Jenkins (2021) Jenkins
Pipeline https://www. jenkins.io/doc/book/pipeline/.

5.	 For OWASP ZAP Command Line Interface (CLI): OWASP
(2021) OWASP Zed Attack Proxy Project https://www.
zaproxy.org/.

6.	 For Checkmarx SAST Tool:Checkmarx. (2021) Checkmarx
Static Application Security Testing https://www.checkmarx.
com/products/static-application-security-testing/.

7.	 For Security Education and Training:SANS Institute (2021)
Information Security Training https://www.sans.org/.

