
Open Access

Journal of Mathematical &
Computer Applications

ISSN: 2754-6705

J Mathe & Comp Appli, 2022 Volume 1(3): 1-6

Review Article

Enhancing Event Handling in Warehouse Management Systems
through the Adapter Design Pattern: A Structural Approach to
Data Integration
Gautham Ram Rajendiran

*Corresponding author
Gautham Ram Rajendiran, USA.

Received: August 03, 2022; Accepted: August 10, 2022, Published: August 17, 2022

Keywords: Warehouse Management System, Event Handling,
Adapter Design Pattern, Data Integration, Data Transformation,
Event-Driven Architecture

Introduction
The WMS is a core component of logistics and supply chain
management, which tracks products from the time they arrive in a
warehouse through their final destination. A typical WMS architecture
interfaces with other external systems, such as suppliers, third-party
logistics providers, and e-commerce platforms, as well as internal
systems, like order management systems and inventory databases
[1,2].

Given the heterogeneity nature of these systems, the WMS has to
handle events coming from multiple different systems. These events
can range from inventory and order updates to shipment notifications,
just to mention a few, which are often issued in dissimilar formats.
This urges a flexible mechanism that can handle data heterogeneity
without inducing tight coupling between the core of the WMS and

its surrounding dependencies [3].

Problem Statement
Traditional ways of handling data from multiple sources involve
developing dedicated handlers for each source. This works in small-
scale implementations, but it indeed gets cumbersome and hard to
maintain once the number of sources increases. For each new source
to be integrated, the code in the WMS has to be changed, which,
among other things, makes the architecture brittle.

Proposed Solution
This paper proposes that the Adapter design pattern can be applied
for the purpose of regularizing interactions between the WMS and
various sources. An Adapter pattern represents a structural design
pattern; or more precisely, it acts like a bridge between incompatible
interfaces [4]. The Adapter thus changes source-specific formats of
the data into one common regular format that the WMS is capable
of processing without need to know all different source formats.

ABSTRACT
Warehouse Management Systems (WMS) are required for the smooth flow of merchandise from supplier to customer in order to coordinate activities
at several touchpoints: from managing inventory, order processing, and shipping. In scaling and evolution, the WMS solution has to integrate with a
variety of external and internal systems that often provide their data in different formats and protocols. Often the challenge arises when these systems
use heterogeneous sources for data intake, thus making the maintenance of unified data intake and processing difficult.

In this paper, we discuss the solution using the Adapter design pattern. The Adapter pattern will act as a mediator that will convert the data from different
sources into one standard format that the WMS is able to handle consistently. It reduces the coupling between core modules of WMS and data sources,
thus providing a flexible, extensible, and maintainable system. The paper shall further present an in-depth study of the use of Adapter pattern in handling
events within WMS and shall be supported with diagrams for clarity.

USA

Application of the Adapter Pattern to WMS Event Handling

Figure 1: Components

Citation: Gautham Ram Rajendiran (2022) Enhancing Event Handling in Warehouse Management Systems through the Adapter Design Pattern: A Structural
Approach to Data Integration. Journal of Mathematical & Computer Applications. SRC/JMCA-134. DOI: doi.org/10.47363/JMCA/2022(1)E134

J Mathe & Comp Appli, 2022 Volume 1(3): 2-6

The components shown in Figure 1 are explained below.

Event Interface
The standardized interface that provides the basic abstraction which
will define how the events will be processed within the WMS. This
interface sets up a contract that should be implemented by every
adapter. It therefore allows coherence in the treatments from one
source to another. It usually includes a method responsible for the
processing of the event, such as processEvent(eventData: Map).

Responsibilities
1. Provides a unified way of processing events.
2. Maps incoming event data from different sources to a standardized

format.
3. Serves as the event handler interface of the WMS.

Interactions
Each adapter implements the Event Interface. This interface defines
the methods invoked by the WmsEventHandler client for processing
the events without regard to the implementation detail of the source
systems.

Implementation Considerations
This interface needs to be flexible for most of the event types without
frequent changes. An example could be that the parameter eventData
can be a generic data structure-like Map or Dictionary for allowing
different attributes based on an event type.

Event Handler (Client)
The Event handler is an entry-point into the event-processing in
Warehouse Management System. The Event handler is responsible for
communicating to the Event Interface for the processing of the events.
It decouples from any real source of events, while the transformation
and standardization of event data is carried out using adapters.

Responsibilities
1. Receives raw events data from the providing sources.
2. Use the Event Interface to handle each event with the

corresponding adapter.
3. Centralizes event handling common logic such as logging,

validation, and error handling.

Interactions
The Event Handler will communicate with the Event Interface,
implemented by the adapters. It will invoke the processEvent method
on that interface, since this forms an uniform way to process events.
Depending on the event-type it may also communicate with other
modules of the WMS, such as inventory management or order
processing.

Implementation Considerations
It has to be thread-safe to cater to a high number of events running
concurrently through WmsEventHandler. In case of big volume, it will
support async processing requirements imposed by the architecture
using message queues or event-driven frameworks like Apache Kafka
[5, 6].

Source Adapters
Each of the adapters will implement the Event Interface that is to
be put between the WMS with any given external source. Such an
adapter would do the job of translation of source-specific event format
to standardized one which the WMS understands; doing the job of
representation. It will also carry out other source-specific logic like
authentication, protocol handling, and data parsing.

The Figure 2 below demonstrates the various adapter states:

Figure 2: Adapter States

Responsibilities
1. Translate source-specific event formats to the normalized

format specified by the Event Interface.
2. Handle source-specific protocols, possibly including REST

APIs, file parsing, or interactions with Message Queue.
3. Perform data validation, and optionally add metadata to the

event data.

Interactions
The Source Adapters will interact with their respective Source
Systems, which are the Adaptees, fetch data, and then transform
it. After transformation, the adapter sends the transformed data
via the Event interface to WmsEventHandler.

Implementation Considerations
Each Adapter should encapsulate all source-specific logic so
that WmsEventHandler remains unaware of the details of source
systems. It's allowed that adapters do retries or handle other error
situations elegantly if the external systems are unreliable.

Source Systems
The source systems are different external or internal entities that
generate events targeting the WMS. They could involve APIs,
databases, file systems, and message queues. Each of them has
its own data format and communication protocol, abstracted by
the respective adapter.

Responsibilities
1. Create events in source format.
2. Expose APIs, files, or messages that may be consumed by

adapters for transformation

Citation: Gautham Ram Rajendiran (2022) Enhancing Event Handling in Warehouse Management Systems through the Adapter Design Pattern: A Structural
Approach to Data Integration. Journal of Mathematical & Computer Applications. SRC/JMCA-134. DOI: doi.org/10.47363/JMCA/2022(1)E134

J Mathe & Comp Appli, 2022 Volume 1(3): 3-6

Interactions
The source systems will interface directly with the adapters.
Each of these adapters pulls, pushes, or gets data from the source
system and then converts it to the standard event format that
WMS requires.

Implementation Considerations
Since source systems are normally outside of the control of the
WMS development team, adapters need to be designed taking into
consideration all changes or any inconsistencies that would happen
in these systems-for example, schema changes or API updates.

External Systems that Interact with the WMS
Event handling in a WMS involves receiving, processing, and
responding to events as representations of changes in the state of
the warehouse. These can be events that can be used to estimate
stock levels, changes to an order, or shipment statuses. These
events will originate from a host of sources and more often than
not, will be in different formats. A few such systems that act as
source of events are elaborated below.

Figure 3: System Interaction

Supplier Systems
These are the external entities that supply the goods or raw
materials to the concerned warehouse. Normally they notify about
their coming shipment, confirm orders placed and their delivery
schedule. These events act like a memo to WMS as to when goods
will be available, when to clear space, or whether orders can be
delivered on time.

Event Types
1. Shipment Notices: This provides notification that shipment

is en route. It should include shipment ID, time of expected
delivery, and the quantity of items shipped.

2. Order Confirmations Confirmation from a supplier that they
have accepted a purchase order. They will contain an order
ID, Item details, and Quantity.

3. Quality Inspection Results: Details about quality checks
carried out on merchandise prior to shipment.

Format and Protocol
Data structures JSON or XML. Web services like RESTful APIs
or SOAP.

Challenges
1. Different suppliers may use different data formats (e.g.,

CSV, JSON, XML), requiring the adapter to handle format
conversions.

2. Protocol differences, such as REST vs. SOAP, may necessitate
additional libraries or tools within the adapter.

Order Management Systems
Order management systems should provide order management
for customers (create, modify, cancel orders). A WMS should be
informed regarding the changes in the status of orders in order to
correctly allocate the inventory and update its internal view of the
current operational plan on how the order fulfillment will happen
inside the warehouse.

Event Type
1. New order placement: A customer placed a new order that

should be allocated by the WMS, preparing for order picking
and packing.

2. Order change of: Changes in an already existing order; order
alteration with regards to the number, article, and delivery
address.

3. Order Canceled: Notification that the order was canceled
and its inventory was not deallocated.

Format and Protocol
JSON or XML payloads. RESTful APIs, message queues, like
RabbitMQ, SQS, or even a file system level with CSV or XML.

Challenges
1. OMS systems often have complex schemas that may not map

directly to the WMS data model, requiring data transformation
and mapping logic.

2. High volumes of order events necessitate the use of
asynchronous processing mechanisms to avoid performance
bottlenecks.

Inventory Management Systems
The Inventory Management Systems keep track of stock on hand,
item locations, and stock movements into and out of the warehouse
[7]. It is very important that the WMS should keep in sync with
the inventory system to avoid stock discrepancies and incorrect
order fulfillment.

Event Types
1. Stock Levels Update: Notifications of a stock level update

in case of any problem, receipt, or transfer of stock.
2. Stock movement, on the other hand, is the movement of

items inside the warehouse, meaning the moving of goods
from one bin to another.

3. Stock Adjustments: For manual or automated changes in
stock level due to an audit of inventory, damage, or expiration.

Format and Protocol
JSON/XML or Database Triggers- may be SQL Events on data
changes. Protocol: RESTful APIs, CDC events from a Database,
and file-based updates like CSV [8].

Challenges
1. Real-time synchronization with inventory systems is critical

for maintaining accurate stock levels, requiring the adapter
to support real-time processing.

2. Handling race conditions and ensuring event ordering is
crucial, especially when multiple events arrive simultaneously
from different sources.

Shipping and Logistics Systems
Information about merchandise transportation, shipment tracking,

Citation: Gautham Ram Rajendiran (2022) Enhancing Event Handling in Warehouse Management Systems through the Adapter Design Pattern: A Structural
Approach to Data Integration. Journal of Mathematical & Computer Applications. SRC/JMCA-134. DOI: doi.org/10.47363/JMCA/2022(1)E134

J Mathe & Comp Appli, 2022 Volume 1(3): 4-6

delivery confirmation, or exception events that must be processed
within the WMS to notify customers and in support of resultant
activities, such as the initiation of replenishment or return
processes.

Event Types
1. Shipment Tracking Updates: Real-time updates on the

location and status of shipments.
2. Delivery Confirmation: Notification that a shipment has

been successfully delivered to the customer or warehouse.
3. Exception Handling: Information about delays, damage, or

other issues encountered during transit.

Format and Protocol
JSON, XML, or EDI (Electronic Data Interchange) formats.
Protocol: RESTful APIs, EDI systems, or file-based integrations
(e.g., CSV).

Challenges
1. EDI format parsing can be complex and requires specialized

libraries.
2. Exception handling and reconciliation may involve complex

workflows, requiring state management within the adapter.

Internal Systems
Events might also be created from internal systems and subsystems
in the warehouse, such as conveyor systems, robotic pickers, or
storage systems. Normally, events serve to check the condition
of the operational equipment of the warehouse and optimization
of workflows.

Event Types
1. Conveyor System Events: Events related to the motion of

items through conveyor belts, jamming, or system breakdown.
2. 2. Robotic Picker Events: Updates on the status of automated

pickers, such as picking success or failure.
3. 3. Events of Storage Systems: The notification of items

stored or retrieved or relocated within the warehouse.

Format and Protocol
JSON, XML, or some Proprietary format used by the devices
themselves.
Protocol: Message Queues, RESTful APIs, or WebSockets.

Challenges
Integration into proprietary systems requires specific adapters for
each subsystem. Real-time processing will prevent any delay in
the working of the warehouses.

Benefits of using the Adapter Pattern
Among the many benefits, the Adapter design pattern contributes
to a great extent to the tasks of implementing its concept into the
architecture of the WMS to cope with multiple heterogeneous data
sources. The following sections will elaborate on these advantages
in detail and identify the ways they help in creating a robust and
maintainable system.

Improved Modularity and Maintainability
Of all the advantages inherent in the use of the Adapter pattern,
probably the biggest is related to good separation of concerns
[9]. Each adapter knows how to convert data derived from a
source in one format into some form of a standard format that the
WMS can then use, decoupling core event-handling logic from
source-specific implementations. This would result in the huge
advantage of modular development whereby, independent of the

main workflow of event handling, either an update, addition, or
replacement can take place without affecting it.

For instance, any change in the API of the supplying partner will
result in changes being done to only the relevant adapter, whereas
the core WMS is kept intact. Thus, it would be easily maintainable
with minimum possibility for bugs during updating.

Reduced Code Duplication
Without the Adapter pattern, a developer commonly creates
his/her event handlers to every new source of data. Thus, such
redundancy can grow a lot in the codebase, causing extra effort
for maintenance and error-prone code. An Adapter pattern lessens
this problem since there is a single interface which each of the
adapters will implement. In cases like these, event handling logic
can be migrated into the core of the WMS, thereby sharing between
distinct event-handling activities-avoiding duplication and hence
promoting the reusability of code.

That may be the case, where the core event handler would
implement some common application-wide logging logics for
WMS applications, such as auditing, while each of the adapters
then must perform just the source-specific transformations. There
is no code duplication present in such a case; hence the DRY
principle remains met, cleaning up the codebase, thereby making
it easier to be maintained [10].

Extendable to Handle Future Requirements
It is easy to extend for new use cases that the WMS will need
to support either for new event types or data formats using the
Adapter pattern. New business needs such as supporting new
event attributes may lead to the avoidance of effortful event
transformations in the near future that will be carried out by
changing/turning the existing adapters without touching the core
system. A more specific example would be that in the near future,
WMS will have to process incoming updates on inventory data,
including additional metadata such as perishables with expiration
dates. InventoryAdapter will then parse this metadata from the
message and append it to the standardized event format. Thus,
should business requirements change, so also does the system,
all while keeping its very core architecture stable.

Support for Multiple Protocols and Formats
This adapter design pattern would find immediate practical
application in WMS, for instance, since the latter needs to support
other systems that may be based on other protocols or message
formats. Perhaps one uses RESTful interfaces for event publishing,
another uses messaging queues, and yet another uses file-based
integration with CSV or XML [11]. There is a common outcome
of supporting different data formats and ways of communication:
the embedding of the peculiar logic within the WMS itself for
each protocol.

The Adapter design pattern encapsulated each of the protocol-
specific logics within their respective adapter. All that the WMS
knows is how to invoke the processEvent() method on the adapters,
to abstract the details of protocol handling. It would now be much
easier to integrate multi-protocol capability: it would support
several different communication mechanisms and data formats
uniformly at the WMS level.

Support for Legacy Systems
Quite often, WMS needs to be integrated with legacy systems
that do not consider modern event-based architecture. These most
probably will make available the data in some sort of obsolete

Citation: Gautham Ram Rajendiran (2022) Enhancing Event Handling in Warehouse Management Systems through the Adapter Design Pattern: A Structural
Approach to Data Integration. Journal of Mathematical & Computer Applications. SRC/JMCA-134. DOI: doi.org/10.47363/JMCA/2022(1)E134

J Mathe & Comp Appli, 2022 Volume 1(3): 5-6

format or using obsolete communication mechanisms. This would
be highly expensive and dangerous to make changes directly in
the WMS to cater to those.
The Adapter pattern will allow this through non-intrusive
integration of the legacy systems by the creation of adapters,
translating the legacy formats and protocols into standardized
formats expected by the WMS. This can be further extended to
allow existing coexistence between these legacy systems and

modern systems for easier migration and reduction of technical
debt from legacy integrations.

Case Study: Implementing Adapters for Inventory and Order
Systems
Let’s consider a case where a WMS may want to receive changes
of inventory from a legacy database hosting inventories and
changes of orders from a modern e-commerce platform:

Inventory Adapter

Figure 4: Inventory Event Adapter

This adapter takes all records in the changelog of the database-inventory creations, deletions, and updates-and normalizes them to a
standard event structure. The adapter converts the different legacy formats and enriches the event data with the additional information
on product categories and supplier details.

Order Adapter

Figure 5: Order Event Adapter

will connect to the RESTful API of the given e-commerce platform
to download order events and transform them to the unified event
structure. It probably will be interested in protocol-specific stuff
like authentication, pagination, and rate limits too, so that the
WMS core will get only well-defined order events. These adapters
will enable the WMS to process events from any of these two
providers without embedding database or API-specific logic into
its core modules. It significantly results in a much cleaner, easier-
to-maintain system that will adapt quite easily to any changes in
the future.

Conclusion
The Adapter design pattern provides the many advantages in event
handling in the context of a WMS. It decouples the WMS core from
any dependencies that may change or extend its functionality, thus
allowing extensibility, scalability, and maintainability; it allows
easy integration of new data sources without code duplication; it
provides more ease in unit testing and debugging processes. After
noting the case study and advantages put forth, one will understand
just how much of a utility the Adapter pattern is in the management
of complexity within the event handling scenarios of WMS.

Citation: Gautham Ram Rajendiran (2022) Enhancing Event Handling in Warehouse Management Systems through the Adapter Design Pattern: A Structural
Approach to Data Integration. Journal of Mathematical & Computer Applications. SRC/JMCA-134. DOI: doi.org/10.47363/JMCA/2022(1)E134

J Mathe & Comp Appli, 2022 Volume 1(3): 6-6

References
1. Alves V, Borba P (2001) Distributed adapters pattern: A

design pattern for object-oriented distributed applications.
in First Latin American Conference on Pattern Languages
of Programming—SugarLoafPLoP, Rio de Janeiro, Brazil.

2. Mao J, Xing H, Zhang H (2018) Design of intelligent
warehouse management system,” Wireless Personal
Communications 102: 1355-1367.

3. Johnson RE, Foote B (1988) Designing reusable classes.
Journal of Object-Oriented Programming 2: 22-35.

4. Kramer C, Prechelt L (1996) Design recovery by automated
search for structural design patterns in object-oriented
software. in Proceedings of WCRE'96: 4th Working
Conference on Reverse Engineering IEEE.

5. Tretola G, Zimeo E (2007) Extending web services semantics
to support asynchronous invocations and continuation. in
IEEE International Conference on Web Services (ICWS
2007) IEEE.

6. Apache Kafka Documentation. https://kafka.apache.org/.
7. Atieh AM, Hazem Kaylani, Yousef Al-abdallat, Abeer Qaderi,

Luma Ghoul, et al. (2016) “Performance improvement of
inventory management system processes by an automated
warehouse management system. Procedia Cirp 41: 568-572.

8. Shi J, YuBin Bao, FangLing Leng, Ge Yu (2008) Study on
log-based change data capture and handling mechanism in
real-time data warehouse. in 2008 International Conference
on Computer Science and Software Engineering, vol. 4. IEEE.

9. De B, Win F, Wouter Joosen, Tine Verhanneman (2002) On
the importance of the separation-of-concerns principle in
secure software engineering. in Workshop on the Application
of Engineering Principles to System Security Design.

10. What is DRY Development?. [Online]. Available: https://
www.digitalocean.com/community/tutorials/what-is-dry-
development.

11. Richardson L, Ruby S (2008) RESTful Web Services.
O'Reilly Media, Inc.

Copyright: ©2022 Gautham Ram Rajendiran. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

