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Introduction
Popular Locality sensitive hashing has been successful and proven to 
help with many applications. Its main idea is to map close points in 
high dimensional space nearer to each other in a lower dimensional 
space with high probability and reduce the search space to a great 
extent. We here in this paper follow an approach of boundary of 
similarity which will be mapped/processed for the dataset that not 
only brings search to a very smaller subset but also has the most 
nearest entity readily available. Although this approach is space 
costly, it gives very fast and accurate results when it comes to 
querying similar images.

Use Case
While there are many use cases and solutions for the topic of Image 
similarity search following are the cases that we are considering 
here in this paper.
•	 image similarity hashes like perceptual hashing for image 

hash generation
•	 hamming distance similarity for similarity comparison 

Approach
The crux of this approach is most of the applications don't have 
an	indefinite	range	of	similarity	requirements	rather	have	a	certain	
degree	of	similarity	as	 requirement.	 for	example	 to	find	95%	
similar	images	of	a	given	image	i.e.	it	is	only	interested	in	95	to	
100 percent similar images to a given Image not the rest. Then we 
define	that	range	as	a	boundary	of	similarity	and	mark	these	per	
image boundaries. 

Simple Linear Similarity boundary
For better understanding, if the hash function generates linearly 
similar hashes i.e. adjacent hashes are associated with most similar 
keys, then the boundary marking would be illustrated as below. if 

X,Y and Z are the candidate entries in a 40 sized hashtable and the 
similarity	boundary	is	defined	as	5%	then	each	candidate’s

adjacent two indexes will be declared as similar indexes. and 
the similarity would fade out as the index moves away from the 
candidate	 index.	and	 if	an	 index	 is	under	another	candidate’s	
similarity boundary then that index will hold similarity for both 
candidates in such a way that it provides quick info which candidate 
its most similar to.

Non-Linear similarity boundaries
But in practice most of the hashes are not linear in terms of similarity. 
In this case we derive all the individual indexes which falls under 
the similarity boundary and process them i.e. update those indexes 
about association with candidate index/key

like shown above, the similar indexes would be scattered per key 
and the pointed index is more similar to Z key though it is linearly 
nearer to Y key. The big advantage here is that this information is 
readily available with all needed indexes.

Details
We consider Hamming distance when calculating similarity distance 
between	keys.Then	we	design	a	hashtable,	given	‘N’	as	number	of	
bits	in	hash(ex	perceptual	hash)	and	‘d’	the	desired	size	of	similarity	
boundary. As preprocessing of the data set this hashtable would 
be used to put each image in the dataset with their corresponding 
generated hash.
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initialization of hash table
We create a 2^N array and initialize with null. as this size will be 
exponentially increasing with N, there will be concerns about the 
size of such a huge array with bigger sizes of hash cases. We will 
analyse those cases further.

Generating variations of keys under similarity boundary
The following function is designed to compute all possible variants 
of	a	given	key	which	have	a	maximum	specified	Hamming	distance.
It starts by initializing an empty list for the variants and an array 
of bit positions from 0 to N-1, where N is the key length. The 
function iterates over distances from 1 to the maximum distance 
(maxDistance). For each distance, it uses the getCombinations 
function to generate all bit position combinations of that length. 
getCombinations works by initializing an empty list and recursively 
building	 combinations	 of	 the	 specified	 length,	 adding	 each	
completed combination to the result list. For each combination, 
generateHammingVariants	creates	a	variant	by	flipping	the	specified	
bits in the original key using the XOR operation. Each variant, 
paired with its distance, is added to the list of variants. The function 
returns	this	list,	enabling	efficient	management	and	retrieval	of	
similar keys in the hash table.

Inserting a key-value
The put method inserts a key-value pair into the hash table, ensuring 
that both the exact key and its Hamming variants are updated. when 
updating a slot it creates a pair of value and hamming-distance 
of the slot from the given key original slot. If the exact key slot 
in the table is empty, it initializes it with the value-distance pair. 
If not, it adds the pair to the existing list, sorting it by distance to 
prioritize closer matches. The method then generates Hamming 

variants	of	the	key	up	to	the	specified	maximum	distance	using	the	
generateHammingVariants function. This process ensures that any 
slot will be having information about what all the values (Images) it 
is	nearer/similar	that	too	sorted	by	similarity	in	turn	helps	efficient	
and quick retrieval of most similar Images for a given hash (say 
query Image).

Deletion of a Certain Key
The delete method removes a key-value pair from the hash table and 
its Hamming variants. If the key slot is empty, the method returns 
immediately. Otherwise, it searches for the entry with the given 
value in the key slot. If found, and its distance is zero (indicating 
an exact match), the method generates Hamming variants of the 
key using generateHammingVariants. It then iterates through these 
variants, removing the value entry from each variant slot. If a variant 
slot becomes empty after removal, it is set to null. The method also 
removes the value entry from the exact key slot and sets it to null 
if it becomes empty. This ensures that the key-value pair and all its 
similar variants are thoroughly deleted from the hash table.

Query An Exact or Nearest Value to A Given Key
The get method retrieves the value associated with a given key 
from the hash table. If the key slot in the table is empty, the method 
returns null, indicating that the key is not present in the hash table. 
If the key slot is not empty, the method returns the value associated 
with	the	key,	specifically	the	first	entry	in	the	list	for	that	key.	This	
ensures that the most relevant value, typically the one with the 
shortest	distance,	is	retrieved	efficiently.	The	get	method	provides	
a straightforward way to access the stored values based on their 
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exact keys.

Analysing time complexity of operations of this hash-table
Get operation
Under ideal conditions, get operations are extremely fast and can be 
completed in constant time. Assuming the entire hashtable is stored 
in memory, retrieving an entry for a given key would have a time 
complexity of O(1). Additionally, obtaining the least distance value 
for that entry from an ordered list should also be O(1). However, 
other	operations	such	as	insertion	(put)	and	deletion	are	significantly	
more time-consuming. Let's analyze these operations further.

Put operation:
•	 Exact Key Insertion: Inserting the exact key into the hash table 

involves checking if the slot is null and adding the key-value 
pair. This operation is O (1).

•	 Generating Hamming Variants: The primary cost in the put 
method comes from generating Hamming variants. The number 
of variants is determined by the combinations of bit positions 
for distances from 1 to maxDistance (d).

o Generating all combinations of k bit positions from N has a 
complexity of  .

o The total number of variants across all distances up to d is the 
sum of combinations for each distance, resulting in  

o For small d relative to N, this can be approximated as  .

•	 Inserting Variants: Each generated variant is inserted into the 
hash table, which is O(1) per insertion.

•	 Sorting: After inserting the variants, sorting is performed, 
which, if using a typical sorting algorithm like QuickSort or 
MergeSort,	has	a	complexity	of	O(m	log	m),	where	m	is	the	
number of entries in the slot. However, since we only insert 
a	fixed	number	of	items	(d	variants),	this	can	be	considered	
O(1) in the context of each put operation.

Total Time Complexity for put:  
Deletion (delete):
•	 Exact Key Deletion: Similar to insertion, checking and 

deleting the exact key from the hash table is O(1).
•	 Generating Hamming Variants: The cost for generating 

Hamming variants is the same as in the put method:  .
•	 Deleting Variants: Each generated variant is checked and the 

specific	value	is	deleted.	This	is	O(1)	per	deletion,	but	since	
there are up to N^d variants, this results in            deletions.

Total Time Complexity for delete:  .
As we can see these are concluding to exponential operations, but 
obviously	making	the	get()	function	very	efficient.

Analyzing space complexity of this hash table
Storage per Key:
•	 For the exact key, we store the key-value pair directly, which 

is O(1) space.
•	 Each key can generate up to            variants, and each variant 

is stored in a separate slot with its distance information.
•	 The space needed for storing these variants is therefore  .
Storage for the Hash Table:

•	 The hash table itself has 2^N slots.
•	 Each slot can hold multiple key-value pairs, especially 

considering variants.
Space Complexity for the Entire Table:  
This is an extremely high space constraint, a simple image hash 
with	32	bit	and	5	bit	hamming	distance	similarity	boundary	could	
end	up	around	15,200	terabytes.

Next Steps
To address the space and time complexities, several strategies can 
be considered:
1. Disk-backed Hash Tables: Implementing disk-backed hash 

tables can help manage space requirements. This approach 
would involve loading only the necessary parts of the table 
into memory, with the rest being stored on disk. This allows 
for handling larger datasets by leveraging external storage, 
thus reducing the in-memory space requirements. this will 
hit performance for hash table operations but would make it 
feasible for other data sets and bigger hash cases

2. 2Parallel Processing:
o      For put(): Implement slot-level locking for exclusive access 
before writing or updating the entry (list of values) in the actual 
slot and all slots within the similarity boundary. This ensures that 
concurrent insertions do not interfere with each other, maintaining 
data integrity.
o      For delete(): Implement key-level locking for exclusive 
access when updating all slots under its similarity boundary. This 
would require changing the entry structure from {value, distance} 
to {value, key, distance} to ensure that the value is accessed only 
if the key is not locked.

These	enhancements	aim	to	improve	the	efficiency	and	scalability	
of the hash table, making it more suitable for larger datasets and 
concurrent operations. By leveraging disk storage and parallel 
processing, the system can handle larger amounts of data while 
maintaining the integrity and performance of the hash table 
operations.

Conclusions
The HammingSimilarity-HashTable implementation showcases 
an	impressive	and	efficient	time	complexity	for	the	get()	function,	
operating in constant time O (1). This ensures rapid retrieval of 
values, making it ideal for scenarios where quick access to data 
is crucial. However, the time complexity of the put() and delete() 
functions	is	significantly	higher,	approximately															,	due	to	the	
need to generate and manage numerous Hamming variants. While 
these operations are computationally intensive, they are typically 
less frequent than retrieval operations, making the approach suitable 
for	fixed	datasets	where	preprocessing	of	insertions	can	be	done	in	
advance, leaving only the get () function to be used in real-time.

Nonetheless, the space complexity of the hash table is a major 
concern, growing exponentially with the size of the hash (N) and 
the similarity boundary (d). This exponential space requirement 
makes the current implementation feasible only for small-scale, 
fixed	image	datasets,	where	the	number	of	possible	keys	and	their	
variants can be reasonably managed [1-7].
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