
Open Access

Journal of Mathematical &
Computer Applications

ISSN: 2754-6705

J Mathe & Comp Appli, 2023 Volume 2(2): 1-4

Review Article

Enhanced image similarity search: Boundary of similarity approach
with similarity hashing for Image Datasets
Sambu Patach Arrojula

*Corresponding author
Sambu Patach Arrojula, USA

Received: May 03, 2023; Accepted: May 10, 2023, Published: May 17, 2023

Keywords: Locality-Sensitive Hashing, Hash Table, Image
similarity, Hamming Distance

Introduction
Popular Locality sensitive hashing has been successful and proven to
help with many applications. Its main idea is to map close points in
high dimensional space nearer to each other in a lower dimensional
space with high probability and reduce the search space to a great
extent. We here in this paper follow an approach of boundary of
similarity which will be mapped/processed for the dataset that not
only brings search to a very smaller subset but also has the most
nearest entity readily available. Although this approach is space
costly, it gives very fast and accurate results when it comes to
querying similar images.

Use Case
While there are many use cases and solutions for the topic of Image
similarity search following are the cases that we are considering
here in this paper.
•	 image similarity hashes like perceptual hashing for image

hash generation
•	 hamming distance similarity for similarity comparison

Approach
The crux of this approach is most of the applications don't have
an	indefinite	range	of	similarity	requirements	rather	have	a	certain	
degree	of	similarity	as	 requirement.	 for	example	 to	find	95%	
similar	images	of	a	given	image	i.e.	it	is	only	interested	in	95	to	
100 percent similar images to a given Image not the rest. Then we
define	that	range	as	a	boundary	of	similarity	and	mark	these	per	
image boundaries.

Simple Linear Similarity boundary
For better understanding, if the hash function generates linearly
similar hashes i.e. adjacent hashes are associated with most similar
keys, then the boundary marking would be illustrated as below. if

X,Y and Z are the candidate entries in a 40 sized hashtable and the
similarity	boundary	is	defined	as	5%	then	each	candidate’s

adjacent two indexes will be declared as similar indexes. and
the similarity would fade out as the index moves away from the
candidate	 index.	and	 if	an	 index	 is	under	another	candidate’s	
similarity boundary then that index will hold similarity for both
candidates in such a way that it provides quick info which candidate
its most similar to.

Non-Linear similarity boundaries
But in practice most of the hashes are not linear in terms of similarity.
In this case we derive all the individual indexes which falls under
the similarity boundary and process them i.e. update those indexes
about association with candidate index/key

like shown above, the similar indexes would be scattered per key
and the pointed index is more similar to Z key though it is linearly
nearer to Y key. The big advantage here is that this information is
readily available with all needed indexes.

Details
We consider Hamming distance when calculating similarity distance
between	keys.Then	we	design	a	hashtable,	given	‘N’	as	number	of	
bits	in	hash(ex	perceptual	hash)	and	‘d’	the	desired	size	of	similarity	
boundary. As preprocessing of the data set this hashtable would
be used to put each image in the dataset with their corresponding
generated hash.

ABSTRACT
Image similarity searching is a well-explored topic with numerous techniques and approaches, each offering unique advantages. In this paper, we present
an approach aimed at accelerating the search for the most similar images to a given query image within an image database. Our method leverages the
principles of Locality-Sensitive Hashing (LSH) but relies on a concept of similarity boundaries to reach the search to most appropriate section and in turn
facilitates a rapid retrieval of most similar content.We assume the availability of a reliable hash function for image similarity that offers high accuracy and a
low collision rate and focus exclusively on the algorithm designed to maintain and manage similarity boundaries for each image within the hashtable. This
strategic organization ensures that similar images are grouped together logically, significantly enhancing the efficiency and speed of the search process.

USA

Citation: Sambu Patach Arrojula (2023) Enhanced image similarity search: Boundary of similarity approach with similarity hashing for Image Datasets.
 Journal of Mathematical & Computer Applications. SRC/JMCA-E113. DOI: doi.org/10.47363/JMCA/2023(2)E113

J Mathe & Comp Appli, 2023 Volume 2(2): 2-4

initialization of hash table
We create a 2^N array and initialize with null. as this size will be
exponentially increasing with N, there will be concerns about the
size of such a huge array with bigger sizes of hash cases. We will
analyse those cases further.

Generating variations of keys under similarity boundary
The following function is designed to compute all possible variants
of	a	given	key	which	have	a	maximum	specified	Hamming	distance.
It starts by initializing an empty list for the variants and an array
of bit positions from 0 to N-1, where N is the key length. The
function iterates over distances from 1 to the maximum distance
(maxDistance). For each distance, it uses the getCombinations
function to generate all bit position combinations of that length.
getCombinations works by initializing an empty list and recursively
building	 combinations	 of	 the	 specified	 length,	 adding	 each	
completed combination to the result list. For each combination,
generateHammingVariants	creates	a	variant	by	flipping	the	specified	
bits in the original key using the XOR operation. Each variant,
paired with its distance, is added to the list of variants. The function
returns	this	list,	enabling	efficient	management	and	retrieval	of	
similar keys in the hash table.

Inserting a key-value
The put method inserts a key-value pair into the hash table, ensuring
that both the exact key and its Hamming variants are updated. when
updating a slot it creates a pair of value and hamming-distance
of the slot from the given key original slot. If the exact key slot
in the table is empty, it initializes it with the value-distance pair.
If not, it adds the pair to the existing list, sorting it by distance to
prioritize closer matches. The method then generates Hamming

variants	of	the	key	up	to	the	specified	maximum	distance	using	the	
generateHammingVariants function. This process ensures that any
slot will be having information about what all the values (Images) it
is	nearer/similar	that	too	sorted	by	similarity	in	turn	helps	efficient	
and quick retrieval of most similar Images for a given hash (say
query Image).

Deletion of a Certain Key
The delete method removes a key-value pair from the hash table and
its Hamming variants. If the key slot is empty, the method returns
immediately. Otherwise, it searches for the entry with the given
value in the key slot. If found, and its distance is zero (indicating
an exact match), the method generates Hamming variants of the
key using generateHammingVariants. It then iterates through these
variants, removing the value entry from each variant slot. If a variant
slot becomes empty after removal, it is set to null. The method also
removes the value entry from the exact key slot and sets it to null
if it becomes empty. This ensures that the key-value pair and all its
similar variants are thoroughly deleted from the hash table.

Query An Exact or Nearest Value to A Given Key
The get method retrieves the value associated with a given key
from the hash table. If the key slot in the table is empty, the method
returns null, indicating that the key is not present in the hash table.
If the key slot is not empty, the method returns the value associated
with	the	key,	specifically	the	first	entry	in	the	list	for	that	key.	This	
ensures that the most relevant value, typically the one with the
shortest	distance,	is	retrieved	efficiently.	The	get	method	provides	
a straightforward way to access the stored values based on their

Citation: Sambu Patach Arrojula (2023) Enhanced image similarity search: Boundary of similarity approach with similarity hashing for Image Datasets.
 Journal of Mathematical & Computer Applications. SRC/JMCA-E113. DOI: doi.org/10.47363/JMCA/2023(2)E113

J Mathe & Comp Appli, 2023 Volume 2(2): 3-4

exact keys.

Analysing time complexity of operations of this hash-table
Get operation
Under ideal conditions, get operations are extremely fast and can be
completed in constant time. Assuming the entire hashtable is stored
in memory, retrieving an entry for a given key would have a time
complexity of O(1). Additionally, obtaining the least distance value
for that entry from an ordered list should also be O(1). However,
other	operations	such	as	insertion	(put)	and	deletion	are	significantly	
more time-consuming. Let's analyze these operations further.

Put operation:
•	 Exact Key Insertion: Inserting the exact key into the hash table

involves checking if the slot is null and adding the key-value
pair. This operation is O (1).

•	 Generating Hamming Variants: The primary cost in the put
method comes from generating Hamming variants. The number
of variants is determined by the combinations of bit positions
for distances from 1 to maxDistance (d).

o Generating all combinations of k bit positions from N has a
complexity of .

o The total number of variants across all distances up to d is the
sum of combinations for each distance, resulting in

o For small d relative to N, this can be approximated as .

•	 Inserting Variants: Each generated variant is inserted into the
hash table, which is O(1) per insertion.

•	 Sorting: After inserting the variants, sorting is performed,
which, if using a typical sorting algorithm like QuickSort or
MergeSort,	has	a	complexity	of	O(m	log	m),	where	m	is	the	
number of entries in the slot. However, since we only insert
a	fixed	number	of	items	(d	variants),	this	can	be	considered	
O(1) in the context of each put operation.

Total Time Complexity for put:
Deletion (delete):
•	 Exact Key Deletion: Similar to insertion, checking and

deleting the exact key from the hash table is O(1).
•	 Generating Hamming Variants: The cost for generating

Hamming variants is the same as in the put method: .
•	 Deleting Variants: Each generated variant is checked and the

specific	value	is	deleted.	This	is	O(1)	per	deletion,	but	since	
there are up to N^d variants, this results in deletions.

Total Time Complexity for delete: .
As we can see these are concluding to exponential operations, but
obviously	making	the	get()	function	very	efficient.

Analyzing space complexity of this hash table
Storage per Key:
•	 For the exact key, we store the key-value pair directly, which

is O(1) space.
•	 Each key can generate up to variants, and each variant

is stored in a separate slot with its distance information.
•	 The space needed for storing these variants is therefore .
Storage for the Hash Table:

•	 The hash table itself has 2^N slots.
•	 Each slot can hold multiple key-value pairs, especially

considering variants.
Space Complexity for the Entire Table:
This is an extremely high space constraint, a simple image hash
with	32	bit	and	5	bit	hamming	distance	similarity	boundary	could	
end	up	around	15,200	terabytes.

Next Steps
To address the space and time complexities, several strategies can
be considered:
1. Disk-backed Hash Tables: Implementing disk-backed hash

tables can help manage space requirements. This approach
would involve loading only the necessary parts of the table
into memory, with the rest being stored on disk. This allows
for handling larger datasets by leveraging external storage,
thus reducing the in-memory space requirements. this will
hit performance for hash table operations but would make it
feasible for other data sets and bigger hash cases

2. 2Parallel Processing:
o For put(): Implement slot-level locking for exclusive access
before writing or updating the entry (list of values) in the actual
slot and all slots within the similarity boundary. This ensures that
concurrent insertions do not interfere with each other, maintaining
data integrity.
o For delete(): Implement key-level locking for exclusive
access when updating all slots under its similarity boundary. This
would require changing the entry structure from {value, distance}
to {value, key, distance} to ensure that the value is accessed only
if the key is not locked.

These	enhancements	aim	to	improve	the	efficiency	and	scalability	
of the hash table, making it more suitable for larger datasets and
concurrent operations. By leveraging disk storage and parallel
processing, the system can handle larger amounts of data while
maintaining the integrity and performance of the hash table
operations.

Conclusions
The HammingSimilarity-HashTable implementation showcases
an	impressive	and	efficient	time	complexity	for	the	get()	function,	
operating in constant time O (1). This ensures rapid retrieval of
values, making it ideal for scenarios where quick access to data
is crucial. However, the time complexity of the put() and delete()
functions	is	significantly	higher,	approximately															,	due	to	the	
need to generate and manage numerous Hamming variants. While
these operations are computationally intensive, they are typically
less frequent than retrieval operations, making the approach suitable
for	fixed	datasets	where	preprocessing	of	insertions	can	be	done	in	
advance, leaving only the get () function to be used in real-time.

Nonetheless, the space complexity of the hash table is a major
concern, growing exponentially with the size of the hash (N) and
the similarity boundary (d). This exponential space requirement
makes the current implementation feasible only for small-scale,
fixed	image	datasets,	where	the	number	of	possible	keys	and	their	
variants can be reasonably managed [1-7].

References
1. https://pyimagesearch.com/2014/02/17/building-an-image-

search-engine-defining-your-similarity-metric-step-3-of-4/
2. Different	types	of	distance	metrics	in	machine	learning
3. Locality Sensitive Hashing (LSH): The Illustrated Guide
4. Random Projection for Locality Sensitive Hashing

Citation: Sambu Patach Arrojula (2023) Enhanced image similarity search: Boundary of similarity approach with similarity hashing for Image Datasets.
 Journal of Mathematical & Computer Applications. SRC/JMCA-E113. DOI: doi.org/10.47363/JMCA/2023(2)E113

J Mathe & Comp Appli, 2023 Volume 2(2): 4-4

5.	 Perceptual Hashes: measuring similarity 6. Similarity hashing and perceptual hashes

Copyright: ©2023 Sambu Patach Arrojula . This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

