
J Eng App Sci Technol, 2023 Volume 5(3): 1-12

Review Article Open Access

Empowering Data Programs: The Five Essential Data Engineering
Concepts for Program Managers

1Senior Principal Consultant, Genpact, San Jose, CA, USA

2Senior Project Manager, Tech Mahindra, San Jose, CA, USA

Mahesh Deshpande1* and Ipsita Nanda2

Journal of Engineering and Applied
Sciences Technology

ISSN: 2634 - 8853

*Corresponding author
Mahesh Deshpande, Senior Principal Consultant, Genpact, San Jose, CA, USA.

Received: May 06, 2023; Accepted: May 10, 2023; Published: May 20, 2023

Keywords: Program Management, Data Engineering, Data, TPM
Leadership Toolkit, Data Engineering Program Manager

Introduction
In today's business landscape, data serves as the lifeblood for
modern organizations, coursing through the veins of analytics and
reports to empower leaders in making informed decisions. Amid
this data deluge, the role of a data engineering program manager
is pivotal, as they play a key role in transforming raw data into
actionable insights. As someone deeply immersed in the realm
of data engineering program management, we have witnessed
firsthand the challenges that arise when dealing with terms like
"ETL pipelines," "data fabric," and "cloud infrastructure." This
unfamiliarity can create communication gaps, impede project
progress, and ultimately hinder the effectiveness of program
managers. Navigating the data landscape demands more than
just business acumen and communication skills from Program
Managers (PMs); it necessitates a solid understanding of the
engine powering it all: data engineering.

In simple terms, Data Engineering is both an art and a science,
involving the creation of infrastructure that collects, stores,
processes, and delivers data for analysis. The architects and builders
of this critical infrastructure are the data engineers, responsible
for ensuring the accuracy, reliability, and accessibility of the
delivered data. This foundation is paramount for the entire data-
driven decision-making process. Program managers play a vital
role in the success of data engineering initiatives by ensuring that
projects are delivered on time, within budget, and to specification.
However, effectively managing data engineering projects requires
a fundamental understanding of the core concepts and principles

that underpin this domain. Program Managers equipped with an
understanding of Data Engineering concepts become exceptional
in their roles as they can ensure that:

• The data infrastructure better aligns with the business goals
prioritized by the leadership.

• The status updates gathered and provided to stakeholders are
crisp and non-confusing.

• The communication with the data engineering teams is
seamless as they speak the same data lingo.

This article provides an overview of five essential data engineering
concepts that can help program managers become effective data
engineering managers.

The 5 Essential Data Engineering Concepts for Program Managers
The Data Engineering projects are complex undertakings that
require careful planning, execution, and oversight. While program
management skills are essential for overseeing any project, data
engineering projects demand a deeper understanding of the
underlying data engineering concepts. By equipping themselves
with a foundational knowledge of data engineering principles and
concepts, program managers can make better decisions, collaborate
more effectively, manage risks more adeptly, and ultimately,
ensure the successful delivery of data-driven initiatives. Program
managers who are well-versed in data engineering concepts are
better equipped to lead these projects to success. The five essential
concepts critical for a data program manager are as follows:

Data Storage and Data Manipulation
Before deep diving into key data storage and complex architecture

ABSTRACT
Data engineering is a crucial aspect of modern organizations, transforming raw data into actionable insights. This article explores five essential data
engineering concepts that program managers should understand to effectively lead data-driven initiatives. These concepts include data architecture and
storage, data modeling and design, ETL pipelines and processes, big data technologies, and data governance and security. By gaining a solid grasp of these
concepts, program managers can better align data infrastructure with business goals, communicate effectively with stakeholders, and ensure the success
of data engineering projects. The article delves into each concept, providing definitions, examples, and best practices, empowering program managers to
navigate the complex landscape of data engineering with confidence and drive meaningful results for their organizations.

Citation: Mahesh Deshpande, Ipsita Nanda (2023) Empowering Data Programs: The Five Essential Data Engineering Concepts for Program Managers. Journal of
Engineering and Applied Sciences Technology. SRC/JEAST-341. DOI: doi.org/10.47363/JEAST/2023(5)235

 Volume 5(3): 2-12J Eng App Sci Technol, 2023

concepts, it is imperative to understand the different types of data.
Data comes in various types, and understanding these distinctions
is crucial for effective management and analysis. Below table
summarizes the various data types along with some examples:

Table 1: Different Types of Data
Structured
Data

• Highly organized and
formatted data with a
clear and fixed schema.

Ex: Tables
in Relational
Databases,
Spreadsheets

Unstructured
Data

• Data lacking a predefined
data model or structure

Ex: Emails, social
media posts,
multimedia files
etc.

Semi
Structured
Data

• Data that has some level
of structure in forms of
tags, keys, or elements

Ex: JSON
(JavaScript
Object Notation),
XML (eXtensible
Markup
Language)

Quantitative
Data

• Numerical data that
represents measurable
quantities and can be
subjected to mathematical
operations.

Ex: Sales figures,
temperature,
stock prices

Qualitative
Data

• Descriptive, non-
numerical data that cannot
be measured but can be
categorized

Ex: Colors,
survey responses,
emotions

Time-Series
Data

• Data points recorded over
regular time intervals,
suitable for analyzing
trends and patterns over
time

Geo-spatial Data

Geo-spatial
Data

• Data that includes
geographical information
or spatial coordinates,
enabling analysis based
on location

Ex. GPS
coordinates,
maps, spatial
databases

Meta-Data • Data that provides
information about primary
data by describing
properties, and context of
the primary data

Ex: File
timestamps,
data source
information, data
format details

Understanding the characteristics and requirements of different
types of data is essential for program managers to effectively
manage, analyze, and derive meaningful insights from their
information resources.

Data Storage Management
Once you are familiar with the basic types of data, a Data
Engineering Program Manager should understand how data
is stored and accessed. Here's a breakdown of crucial storage
concepts:

Relational Databases
Structured data organized in tables with rows and columns, with
relationships among tables established through primary and
foreign keys [1]. These are widely used in traditional business
applications ERP, CRM for maintaining customer records or
financial transactions. Examples: MySQL, PostgreSQL, Oracle
etc.

NoSQL Databases
A broad category of flexible data structures beyond traditional
relational databases designed for large, semi-structured data like
sensor readings, social media posts, or website logs [2]. The most
common types of NoSQL databases are:

•	 Document Stores: Data is stored in document-like structures
(JSON, BSON etc.); ideal for content management systems
and e-commerce applications. Examples: MongoDB,
Couchbase.

•	 Key-Value Stores: Data is stored as key-value pairs, suitable
for caching and storing user sessions. Examples: Redis,
Amazon DynamoDB.

•	 Wide-Column Stores: Stores data in tables, rows, and
dynamic columns. Great for analyzing large datasets.
Examples: Cassandra, HBase.

•	 Graph Databases: Designed for data whose relations are
well represented as a graph and has elements interconnected
with many relationships. Example: Neo4j, Amazon Neptune

In-Memory Databases
These databases store data in the main memory (RAM) instead of
disk, which significantly speeds up data retrieval times. Widely
used for Real-time analytics, caching, session storage, and
applications where high read and write speeds are critical [3].
Example: Redis, SAP HANA.

Time-Series Databases
Optimized for storing and managing time-stamped data or data
that changes over time, such as IoT app monitoring, real-time
analytics. Examples: Influx DB, Timescale DB [4].

Vector Database
Vector Database is a powerful concept gaining huge traction in
data engineering. While traditional databases store data in rows
and columns and excel at storing and retrieving data based on
exact matches, Vector databases stores data in multi-dimensional
points in a high-dimensional space. Each point (a vector) captures
the essence of a piece of data (e.g., an image, text document, or
sensor reading) based on its unique characteristics. This unlocks
powerful capabilities like:

•	 Similarity Search: Find similar data points even if they have
different formats or structures. Perfect for recommending
music, identifying fraudulent transactions, or searching for
similar images.

•	 Real-time Analysis: Handle massive datasets efficiently for
tasks like anomaly detection in sensor data or personalized
recommendations in real-time.

•	 Machine Learning Integration: Easily train and deploy
machine learning models that rely on vector representations
of data.

Vector databases are relatively new compared to traditional
databases and are still evolving. They might not be suitable for
all data types, especially highly structured data. However, vector
databases are a crucial component in the modern data ecosystem,
especially with the growing importance of AI and machine learning
across various industries [5]. Their ability to efficiently handle
complex, high-dimensional data makes them invaluable for
applications requiring fast and accurate similarity searches. In an
era where data analysis increasingly relies on deep understanding
of information, Program Managers can stay ahead of the curve
by learning about Vector databases such as Pinecone and Milvus.

Citation: Mahesh Deshpande, Ipsita Nanda (2023) Empowering Data Programs: The Five Essential Data Engineering Concepts for Program Managers. Journal of
Engineering and Applied Sciences Technology. SRC/JEAST-341. DOI: doi.org/10.47363/JEAST/2023(5)235

 Volume 5(3): 3-12J Eng App Sci Technol, 2023

Data Querying and Data Manipulation
Data querying refers to the process of retrieving data from a
database or data store based on specific criteria. It involves using
query languages to specify the desired data and the conditions for
retrieval. Data manipulation, on the other hand, encompasses the
tasks of inserting, updating, and deleting data within a database.
Data querying and manipulation are essential skills for data
engineering program managers as they allow them to extract,
transform, and analyze data effectively. SQL (Structured Query
Language) and scripting languages such as Python play a crucial
role in this process.

SQL Basics
SQL is the standard language used for relational database
management systems (RDBMS). It provides a declarative way
to interact with databases, allowing users to define the desired
result set without specifying the exact steps to retrieve it [6].

Key Concepts of SQL
•	 SELECT Statement: Used to retrieve data from one or more

tables based on specified criteria.
•	 WHERE Clause: Filters the result set based on specified

conditions.
•	 JOIN Operations: Combines rows from two or more tables

based on a related column between them.
•	 GROUP BY and HAVING Clauses: Used for grouping and

aggregating data based on specific columns.
•	 INSERT, UPDATE, and DELETE Statements: Used for

modifying data within a table.

Scripting Languages - Python
Python is a versatile and widely used programming language in
data engineering. It provides a rich set of libraries and tools for
data manipulation, analysis, and integration [7].

Key Aspects of Python for Data Engineering
•	 Data Processing Libraries: Python offers powerful libraries

like pandas, NumPy, and PySpark for data manipulation,
cleansing, and analysis.

•	 Database Connectivity: Python provides libraries like
SQLAlchemy and psycopg2 for connecting to various
databases and executing SQL queries.

•	 Data Integration: Python can be used to extract data from
different sources (e.g., APIs, files, databases), transform it,
and load it into target systems.

•	 Scripting	and	automation: Python allows data engineering
program managers to automate repetitive tasks, such as data
pipelines, ETL processes, and data validations.

Basic knowledge of SQL and Python is crucial for data engineering
program managers for several reasons:

•	 Data Understanding: SQL allows program managers to
explore and understand the structure and content of databases.
They can write queries to retrieve specific subsets of data, join
tables, and aggregate information to gain insights.

•	 Data Validation and Quality Checks: Program managers
can use SQL to perform data validation and quality checks.
They can write queries to identify missing values, duplicates,
or inconsistencies in the data.

•	 Data Transformations: SQL and Python enable program
managers to transform and manipulate data. They can use
SQL to filter, sort, aggregate data, while Python can be used
for more complex transformations and data cleansing.

•	 Data Pipeline Development: Program managers with SQL
and Python skills can actively participate in the development
of data pipelines. They can write scripts to extract data from
source systems, transform it and load it into target systems.

•	 Collaboration With Technical Teams: Knowledge of
SQL and Python allows program managers to effectively
communicate with data engineers, analysts, and other technical
stakeholders. They can provide precise requirements, review
code, and contribute to technical discussions.

•	 Performance Optimization: Understanding SQL and Python
enables program managers to identify and optimize slow-
performing queries or inefficient data processing scripts.

While data engineering program managers may not be expected to
write complex SQL queries or Python scripts daily, having a basic
understanding of these technologies empowers them to effectively
manage data engineering projects, make informed decisions,
and collaborate with technical teams. It's important for program
managers to continuously enhance their SQL and Python skills
through training, hands-on practice, and staying updated with the
latest trends and best practices in data engineering.

Cloud vs. On-Premise Deployment
For a data engineering program, when deciding between cloud
and on-prem deployment, it's crucial for data engineering program
managers to assess their organization's specific requirements,
existing infrastructure, data security needs, budget, and long-term
goals. Many a times a hybrid approach, combining both cloud
and on-prem components, can also be considered to balance
the benefits and address organization’s specific needs. Data
Engineering Program Managers need to be aware of the following
factors, which are critical in deciding between choosing cloud vs.
on-prem for deployment:

Scalability and Elasticity
Scaling resources on-prem requires physical hardware upgrades
and can be time-consuming and costly, whereas cloud platforms
allow for easy scaling of resources up or down based on demand
and quick provisioning of additional compute, storage, and
network resources as needed, offering high elasticity [8].

Infrastructure Management
With on-prem deployment, the responsibility of managing and
maintaining the entire infrastructure stack, including hardware,
networking, and security rests with the organization, requiring
dedicated IT resources and expertise, whereas in case of cloud
deployment, cloud providers handle the underlying infrastructure,
including hardware, networking, and maintenance. Cloud allows
engineering team to focus on application development instead of
infrastructure management.

Cost Structure
On-prem deployment requires upfront capital investment for
hardware, software licenses, and infrastructure setup along withs
ongoing costs for maintenance, upgrades, and support, whereas
cloud deployment follows a pay-as-you-go model, where orgs are
billed based on the resources consumed, providing the ability to
optimize costs based on usage patterns [9].

Data Security and Compliance
With on-prem deployment, organizations have full control over
their data security and can implement stringent security measures
tailored to organization's needs, which can be crucial for specific
industries such as federal government. Cloud providers also offer

Citation: Mahesh Deshpande, Ipsita Nanda (2023) Empowering Data Programs: The Five Essential Data Engineering Concepts for Program Managers. Journal of
Engineering and Applied Sciences Technology. SRC/JEAST-341. DOI: doi.org/10.47363/JEAST/2023(5)235

 Volume 5(3): 4-12J Eng App Sci Technol, 2023

robust security measures and data encryption, which however
needs to be carefully assessed first.

Data Transfer and Latency
On-prem eliminates data transfer costs and can provide lower
latency for data access within the local network. However, it
may limit ability to integrate with cloud-based services [10].
Hybrid model will incur data transfer costs and latency issues. If
deployment is completely cloud-based data transfer and latency
costs may be minimized.

Data Modeling & Design
As a Data Engineering Program Manager, grasping the core
concepts of data modeling and design is crucial for leading
successful project as it equips to make informed decisions and
communicate effectively.

Data Modeling Basics
Data modeling is the process of creating a visual representation
of the structure and relationships within a set of data. It involves
defining how data is organized, structured, and related within a
system, and depicting it visually. The primary goal of data modeling
is to provide a clear and concise blueprint that provides consistent
information to database developers, analysts, and stakeholders
alike [11]. It’s akin to planning a city's layout, ensuring easy
access, efficiency, and flexibility.

Key Data Modeling Terminologies
•	 Entities: Real-world objects or concepts represented in the

system (e.g., customers, products, orders).
•	 Attributes: Characteristics of entities (e.g., customer name,

product price, order date).
•	 Relationships: Connections between entities (e.g., a customer

places an order for a product).
•	 Primary Key: A unique identifier for each record in a table

to ensure data integrity.
•	 Secondary Key: An attribute in one table that refers to the

primary key in another table, used to link tables.
• Normalization: Organizing data to minimize redundancy and

ensure data integrity.
•	 Denormalization: Organizing data to optimize query

performance.

Types of Data Models
•	 Conceptual Data Model: helps stakeholders understand

domain by represents high-level concepts and relationships
between objects. It focuses on what data should be stored
and does not concern itself with implementation details. Ex.
The below diagram shows a conceptual data model with 3
entities where a customer can place multiple orders and each
order contains multiple products.

Figure 1: Example of a Conceptual Data Model

•	 Logical Data Model: represents a structure that can be
implemented in a database management system (DBMS). It
includes entities, attributes, relationships, and contracts as
highlighted in the example below.

Figure 2: Example of a Logical Data Model

•	 Physical Data Model: provides the physical implementation
details of database by specifying technical aspects such as
tables, columns, data types, indexes etc. required for database
administrators and developers to build, optimize, and maintain
the physical database. The example below is a physical data
model for the customer, order products scenario.

Figure 3: Example of a Physical Data Model

Data Modelling Techniques
Entity-Relationship Diagram (ERD)
Visualizes entities, attributes, and relationships using symbols
and lines.

Figure 4: Example of an Entity-Relationship Diagram

Dimensional Modeling
Optimizes data for data warehousing and analytics, focusing on
facts and dimensions.

Popular Data Modelling Tools
Erwin Data Modeler, IBM Infosphere Data Architect, MS Visio,
SAP PowerDesigner, Oracle SQL Developer Data Modeler, Toad,
Lucid Chart:

Citation: Mahesh Deshpande, Ipsita Nanda (2023) Empowering Data Programs: The Five Essential Data Engineering Concepts for Program Managers. Journal of
Engineering and Applied Sciences Technology. SRC/JEAST-341. DOI: doi.org/10.47363/JEAST/2023(5)235

 Volume 5(3): 5-12J Eng App Sci Technol, 2023

Knowledge of data modeling concepts helps program managers
understand how data modeling choices affect data quality,
security, and scalability and help determine the potential modeling
complexities impacting project timelines and costs [12].

Data Warehouse, Data Lake and Data Mesh
Data Warehouse, Data Lake, and Data Mesh are all concepts
related to storing, managing, and utilizing large amounts of data
within an organization. However, they have distinct characteristics
and serve different purposes as highlighted below.

Data Warehouse
A data warehouse is a centralized repository that stores structured,
cleaned, and integrated data from various sources. It is Designed
to support analytics and business intelligence (BI) by providing a
single source of truth for reporting and decision-making. It is typically
organized in a schema-on-write approach, meaning the data is
transformed and structured before being loaded into the warehouse.

Examples: Snowflake, Microsoft Azure Synapse Analytics,
Google Big Query, Oracle Exadata, Amazon Redshift.

Data Lake
A data lake is a centralized repository that stores large volumes of
raw, unstructured, and semi-structured data in its native format. It
is Designed to be a flexible and scalable storage solution for big
data, allowing organizations to store data from diverse sources
without the need for upfront data modeling. It follows a schema-
on-read approach, where data is stored in its original format, and
the schema is applied only when the data is read or analyzed.

Examples: Apache Hadoop, Amazon S3, Microsoft Azure Data
Lake Storage, Google Cloud Storage.

Data Mesh
A Data Mesh is an architectural approach that aims to decentralize
data ownership and management across an organization. It
advocates for a domain-driven design, where data is treated as
a product and owned by the teams closest to the data (domain
teams). Data Mesh emphasizes self-serve data infrastructure,
enabling domain teams to independently manage their data while
adhering to global governance and interoperability standards [13]

Examples: Apache Kafka, Apache Pulsar, Confluent Platform,
Amazon MSK, Google Pub/Sub.

Figure 5: Comparing Data Warehouse, Data Lake & Data Mesh

Understanding the differences and nuances of Data Warehouse,
Data Lake, and Data Mesh would help a Data Engineering Program
Manager to make establish clear data ownership and foster

collaboration between domain teams in a Data Mesh architecture
ensuring alignment of business goals with the corresponding data
initiatives across the organization [14].

Data Warehouse Design
Data Warehouses are specialized relational databases designed and
optimized for analysis and reporting of large volumes of data. Star
Schema and Snowflake Schema are two common approaches to
designing the logical structure of a data warehouse.

Star Schema
Star Schema is a simple and intuitive design that consists of
a central fact table surrounded by dimension tables. The fact
table contains the main metrics or measures of interest, such
as sales amount or quantity, and foreign keys to the dimension
tables. Dimension tables store the descriptive attributes related
to the facts, such as customer details, product information, or
time periods. The star schema is named after its resemblance to
a star shape, with the fact table at the center and dimension tables
radiating outward.

Example: Consider a retail sales data warehouse with a star
schema design with BOOKINGS as the Fact Table and SALES,
PRODUCTS, ORDERS, TIME as Dimension Tables. The
BOOKINGS table contains the Sales bookings transactions with
foreign keys to each of the dimension tables. The dimension
tables provide additional details about each of the dimensions as
shown in figure 6.

Snowflake	Schema
Snowflake Schema is an extension of the Star Schema that
normalizes the dimension tables further to reduce redundancy.

In a Snowflake Schema, dimension tables are split into multiple
related tables based on their hierarchical relationships or
dependencies. The main dimension tables are connected to sub-
dimension tables, forming a snowflake-like structure [15].

Snowflake Schema can improve data integrity and reduce data
redundancy but may require more complex queries and joins
compared to Star Schema.

Example: To illustrate the snowflake schema, let's consider
the previous retail sales retail sales data warehouse example
with BOOKINGS as the Fact Table and SALES, PRODUCTS,
ORDERS, TIME as Dimension Tables and extend it to Snowflake
schema where the PRODUCT dimension is normalized into
PRODUCTS and CATEGORY and the TIME dimension is
normalized into YEAR and QUARTER tables.

Figure 6: STAR Schema vs. SNOWFLAKE Schema

The choice between Star Schema and Snowflake Schema
depends on factors such as data complexity, query performance

Citation: Mahesh Deshpande, Ipsita Nanda (2023) Empowering Data Programs: The Five Essential Data Engineering Concepts for Program Managers. Journal of
Engineering and Applied Sciences Technology. SRC/JEAST-341. DOI: doi.org/10.47363/JEAST/2023(5)235

 Volume 5(3): 6-12J Eng App Sci Technol, 2023

requirements, and the level of data redundancy acceptable in the
data warehouse. Star Schema is simpler and often preferred for
its ease of use and query performance, while Snowflake Schema
provides a more normalized structure and can be beneficial when
dealing with complex hierarchical relationships or when data
integrity is a primary concern.

Data Extraction, Transformation and Loading (ETL) Pipelines
and Processes
ETL Pipelines: Understand different Stages of Ingestion,
Transformation and Loading

The ETL process is a crucial component of data integration and
data warehousing workflows for decades. By developing a solid
understanding of ETL processes, Data Program Managers can
effectively manage any data integration projects and empower
themselves to make informed decisions regarding data architecture
and technology choices.

ETL involves three main steps:
•	 Extract: In this step, data is read and retrieved from various

sources, such as databases, flat files, APIs etc.
•	 Transform: This step involves cleaning, formatting,

restructuring, enriching the data to meet the requirements
of the target system or data warehouse. It may include
data validation, filtering, sorting, aggregating, joining, and
applying business rules or calculations.

•	 Load: In the final step, the transformed data is loaded into
the desired target data warehouse or, data mart.

The ETL process is commonly used in scenarios where
organizational data needs to be consolidated from multiple
sources, transformed to meet specific requirements, and loaded
into a centralized repository for reporting, analysis, or further
processing [16].

ETL vs. ELT (Extract, Load, Transform)
While the ETL process follows the traditional Extract, Transform,
Load sequence, the ELT approach reverses the order of the last
two steps. The key difference between ETL and ELT lies in
when and where the transformation step occurs. ETL performs
transformations before loading the data into the target system,
typically in a staging area, while ELT loads the raw data first and
then transforms it within the target system.

Table 2: Comparison between ETL and ELT
Comparison
Parameter

ETL ELT

Best Suited when the transformation
logic is complex, and
data needs cleansing
before loading.

for handling large
volumes of data
or data with high
velocity.

Agility less Agile, as any change
in transformation logic
requires entire ETL
process to be updated.

more agility, as
transformations can
be modified without
impacting extraction
& loading process

Skillset and
Tools

requires specialized ETL
tools and expertise in
transformation logic and
data modeling

leverages the
processing power
and built-in
transformation
capabilities of the
target system

Top ETL Tools
There are various ETL tools available in the market, each with its
own strengths and capabilities. Here are top 5 tools:

•	 Talend Data Integration: An open-source ETL tool with a
comprehensive set of data integration capabilities, including
data profiling, cleansing, and transformation.

•	 Informatica PowerCenter: A widely used commercial ETL
tool known for its scalability, performance, and advanced
data integration features.

•	 AWS Glue: A serverless data integration service provided by
Amazon Web Services (AWS) that simplifies the ETL process
for cloud-based data sources and data lakes.

•	 Stitch Data Loader: A cloud based ETL platform that
simplifies the process of extracting data from various sources
and loading it into data warehouses or data lakes.

•	 Apache	Nifi:	An open-source, web-based tool for data
integration and automation, with a focus on real-time data
flows and streaming data processing.

Pipeline Data Processing: Batch vs. Streaming
When it comes to pipeline data processing in the context of ETL
workflows, both batch and streaming processing approaches can
be used. The choice between batch and streaming ETL processing
depends on the specific requirements of the data pipeline, such as
the need for real-time insights, the volume and velocity of data,
and the complexity of the transformations required.

Batch Data Processing
Batch data processing involves extracting data from source
systems, transforming it, and loading it into a target system in
batches at scheduled intervals. The data is typically collected over
a period, such as hourly, daily, or weekly, and processed together
in a single batch. Batch processing is suitable for scenarios where
data freshness is not a critical requirement, and the data can be
processed periodically. Batch Processing is commonly used in
the following scenarios:

•	 Data Warehousing: To populate data warehouses by
extracting data from various source systems, transforming it
into a consistent format, and loading it into the data warehouse
for analysis and reporting.

•	 Historical Data Loading: To load large volumes of historical
data into a target system, such as migrating data from legacy
systems to a new platform.

•	 Periodic Data Synchronization: To synchronize data
between different systems or databases on a regular basis,
ensuring data consistency across multiple platforms.

Since data is processed in batches, insights and actions based on the
processed data are delayed until the next batch processing cycle.
Therefore, Batch Processing may not be suitable for applications
that require real-time or near-real-time data processing. For real-
time data processing, Stream Processing would be ideal.

Streaming Data Processing
Streaming data processing involves continuously extracting,
transforming, and loading data as it arrives in real-time or near-
real-time. Data is processed individually or in small batches
(micro-batches) as soon as it is generated or received from the
source systems allowing for immediate insights and actions based
on the processed data.

Streaming Data Processing is commonly used in the following
scenarios:

Citation: Mahesh Deshpande, Ipsita Nanda (2023) Empowering Data Programs: The Five Essential Data Engineering Concepts for Program Managers. Journal of
Engineering and Applied Sciences Technology. SRC/JEAST-341. DOI: doi.org/10.47363/JEAST/2023(5)235

 Volume 5(3): 7-12J Eng App Sci Technol, 2023

•	 Real-time Analytics: real-time analytics scenarios, such as
monitoring and analyzing sensor data, user behavior, or social
media feeds in real-time, enabling prompt decision-making
and responsiveness [17].

•	 Fraud Detection: Streaming Processing is employed in
fraud detection systems to identify and respond to fraudulent
activities as they occur, such as in financial transactions or
network security.

•	 Real-time Data Integration: Streaming Processing enables
real-time data integration between different systems, allowing
for seamless data flow and up-to-date information across the
organization.

Streaming processing systems can be complex to design,
implement, and maintain due to the real-time nature of data
processing and need for fault-tolerant and scalable architectures.
Ensuring data consistency and handling out-of-order or delayed
data can also be challenging in streaming scenarios, especially
when dealing with multiple data sources.

Kappa and Lambda Architectures
Kappa architecture is a stream-based data processing architecture
that treats all data as a stream. It eliminates the need for separate
batch and streaming processing layers by using a single stream
processing engine for both real-time and historical data processing.

Lambda architecture combines both batch and streaming
processing approaches. It consists of three layers:

1. the batch layer for processing historical data,
2. the speed layer for real-time processing of incoming data, and
3. the serving layer for querying and exposing the results.

Kappa architecture simplifies the data processing architecture
by using a single stream processing engine, while Lambda
architecture provides a hybrid approach that combines batch and
streaming processing for comprehensive data processing and
analysis. Ultimately, for Data Engineering Program Managers
understanding the characteristics, use cases, and limitations of
batch and streaming ETL processing, along with the concepts
of Kappa and Lambda architectures, helps in designing and
implementing data pipelines that align with the specific needs
of the organization.

Pipelines Automation & Orchestration: Illustration through
Apache	Airflow
The process of automating and managing the execution of ETL
workflows ensuring smooth and efficient data processing involves
defining dependencies, scheduling tasks, handling failures, and
monitoring of the overall pipeline.

Apache Airflow is an open-source platform for programmatically
authoring, scheduling, and monitoring workflows. It provides a
way to define ETL pipelines as code, allowing for version control,
collaboration, and easy maintenance [18]. Let's consider an
example where we have an ETL pipeline that extracts data from
a database, performs transformations, and loads the transformed
data into a data warehouse. ETL Pipeline can be automated and
orchestrated using Airflow following the below steps:

Define	the	DAG	(Directed	Acyclic	Graph)
In Airflow, workflows are defined as DAGs, which represent a
collection of tasks and their dependencies. Each task corresponds
to a specific operation. Dependencies between tasks are defined
to ensure the proper execution order.

Define	the	Tasks
Each task in the DAG represents a specific operation in the ETL
pipeline. For a simple ETL pipeline, we have three tasks: extract_
data, transform_data, and load_data. Each task is defined using
an operator, such as the PythonOperator, which allows executing
Python functions.

Set Dependencies
Dependencies between tasks are defined using the >> operator in
Airflow. For example, extract_task can be set as a dependency for
transform_task, and transform_task can be set as a dependency for
load_task. This ensures that the tasks are executed in the correct
order: extraction, transformation, and loading.

Schedule the Pipeline
Airflow allows scheduling the pipeline to run at specific intervals
or based on certain conditions. For example, if the pipeline needs
to be run daily, the schedule_interval parameter can be set to
timedelta (days=1)

Monitor and Manage the Pipeline
Airflow provides a web-based user interface for monitoring and
managing the pipeline execution. It allows tracking the status of
tasks, handling failures, and visualizing the pipeline's progress.
Airflow also provides features like email notifications, logging,
and error handling to ensure the pipeline runs smoothly.

Airflow's modular architecture, extensive set of operators and
hooks, and the ability to define workflows as code make it a
powerful tool for ETL pipeline automation and orchestration. By
using Airflow for ETL pipeline automation and orchestration, Data
Engineering Program Managers can enable efficient and reliable
data processing, reducing manual intervention and promote
code reusability, version control, and collaboration among team
members.

Big Data Technologies
Big Data refers to extremely large and complex datasets that are
difficult to process and analyze using traditional data processing
tools and techniques. Big Data is characterized by the "5 V's":
Volume (large amounts of data), Velocity (high speed of data
generation and processing), Variety (diverse types and sources of
data), Veracity (data accuracy and reliability), and Value (extracting
meaningful insights from the data). Hadoop and Spark are two
popular frameworks used for Big Data processing.

Hadoop & Spark
Hadoop is an open-source framework designed for distributed
storage and processing of large datasets across clusters of
computers. It consists of two main components: Hadoop
Distributed File System (HDFS) for storage and MapReduce for
processing. Hadoop allows for fault-tolerant and scalable data
processing by distributing data and computations across multiple
nodes in a cluster. It is suitable for batch processing and can handle
structured, semi-structured, and unstructured data [19]. Hadoop
ecosystem includes various tools and libraries like Hive, Pig,
HBase, and Mahout for different Big Data tasks.

Key	Benefits	of	Hadoop
•	 Scalability: Hadoop can scale horizontally by adding more

nodes to the cluster, allowing it to handle massive datasets.
•	 Fault Tolerance: Hadoop ensures data reliability by

replicating data across multiple nodes, making it resilient to
hardware failures.

•	 Cost-Effective: Hadoop runs on commodity hardware,

Citation: Mahesh Deshpande, Ipsita Nanda (2023) Empowering Data Programs: The Five Essential Data Engineering Concepts for Program Managers. Journal of
Engineering and Applied Sciences Technology. SRC/JEAST-341. DOI: doi.org/10.47363/JEAST/2023(5)235

 Volume 5(3): 8-12J Eng App Sci Technol, 2023

making it cost-effective compared to traditional data
processing.

•	 Flexibility: Hadoop can handle various types of data,
including structured, semi-structured, and unstructured data.

Spark is an open-source distributed computing framework designed
for fast and efficient data processing. It provides a unified engine
for batch processing, real-time streaming, machine learning, and
graph processing. Spark uses in-memory computation and a
directed acyclic graph (DAG) execution engine, which enables
it to process data much faster than Hadoop's MapReduce [20]. It
offers APIs in multiple programming languages, including Scala,
Java, Python, and R. Spark ecosystem includes libraries like Spark
SQL, Spark Streaming, MLlib (machine learning), and GraphX
(graph processing).

Key	Benefits	of	Spark
•	 Speed: Spark's in-memory computation and optimized

execution engine make it significantly faster than Hadoop
for many data processing tasks.

•	 Ease of Use: Spark provides a simple and expressive
API, making it easier to write and maintain complex data
processing workflows.

•	 Real-Time Processing: Spark Streaming enables real-time
data processing, allowing for low-latency applications.

•	 Machine Learning: MLlib, Spark's machine learning
library, offers a wide range of algorithms for data analysis
and predictive modeling.

•	 Integration: Spark can seamlessly integrate with various
data sources, including Hadoop, databases, and cloud systems

Both Hadoop and Spark have their strengths and are widely used
in the Big Data ecosystem. Hadoop is known for its scalability
and fault tolerance, while Spark excels in fast data processing,
real-time streaming, and machine learning. The differences are
highlighted in the below table:

Table 3: Hadoop vs. Spark
Feature Hadoop Spark
Processing Model Batch processing

using MapReduce
Batch processing,
real-time streaming,
machine learning,
graph processing.

Speed Slower due to disk
I/O and MapReduce
overhead

Faster due to in-
memory computation
and optimized
execution engine

Ease of Use Requires writing
MapReduce jobs,
which can be
complex

Provides a simple
and expressive API,
making it easier to
use

Machine Learning Mahout library for
machine learning,
but limited compared
to Spark

MLlib offers a wide
range of machine
learning algorithms

Ecosystem Larger ecosystem
with various tools
and libraries

Growing ecosystem
with a focus on
data processing and
analytics

The Data Engineering Program Managers should decide
between choosing Hadoop and Spark, depending on the specific
requirements of their Big Data project, considering the type of
ecosystem, processing needs, and desired performance.

Cloud-Based Big Data Solutions
Managed Big Data services, such as Amazon EMR, Google Cloud
Dataproc, and Azure HDInsight, are cloud-based offerings that
simplify the deployment, management, and scaling of Hadoop
and Spark clusters. These services are designed to abstract away
the complexities of setting up and maintaining the underlying
infrastructure, allowing Data Engineering Program Managers to
drive the data processing and analytics tasks.

Amazon EMR (Elastic MapReduce)
Amazon EMR is a fully managed Big Data platform that makes it
easy to process and analyze vast amounts of data using. Hadoop and
Spark frameworks. It provides a scalable and flexible environment
for running distributed data processing jobs, interactive querying,
and machine learning workloads.EMR takes care of provisioning
and configuring the underlying EC2 instances, installing and
managing Hadoop and Spark software, and handling cluster
scaling and fault tolerance. It integrates seamlessly with other
AWS services, such as Amazon S3 for data storage, Amazon
Kinesis for real-time data streaming, and Amazon Redshift for
data warehousing. EMR supports a wide range of Hadoop and
Spark ecosystem tools, including Hive, Pig, HBase, Presto, and
Zeppelin, enabling diverse data processing and analytics use cases.

Google Cloud Dataproc
Google Cloud Dataproc is a fully managed Hadoop and Spark
service that allows for fast and cost-effective processing of large
datasets. It enables the creation of Hadoop and Spark clusters in a
matter of seconds, with automatic configuration and management
of the underlying infrastructure. Dataproc integrates with other
Google Cloud services, such as Google Cloud Storage for data
storage, BigQuery for data warehousing, and Pub/Sub for real-time
data ingestion. It provides a familiar Hadoop and Spark ecosystem
experience, supporting tools like Hive, Pig, and Jupyter Notebooks
for data processing and analysis. Dataproc offers flexibility in
terms of cluster sizing, configuration, and scaling, allowing Data
Engineering Program Managers to optimize performance and
costs based on workload requirements.

Azure HDInsight
Azure HDInsight is a fully managed, open-source analytics service
for processing large datasets using Hadoop and Spark clusters.
HDInsight integrates with Azure storage services, such as Azure
Blob Storage and Azure Data Lake Storage, for seamless data
storage and access. It provides a user-friendly interface for cluster
creation, management, and monitoring, along with integration
with Azure Active Directory for secure access control. HDInsight
offers enterprise-grade security features, such as network isolation,
encryption, and integration with Azure Virtual Networks, ensuring
data protection and compliance. It supports a wide range of Hadoop
and Spark components, including Hive, Pig, Spark SQL, and Spark
Streaming, enabling diverse data processing scenarios.

Key	Benefits	of	Managed	Hadoop	and	Spark	Services
• Simplified Deployment and Management: It eliminate the

need for manual setup, configuration, and management of
the underlying infrastructure. Data Engineering Program
Managers can quickly provision clusters and focus on writing
and executing data processing jobs, rather than worrying
about the underlying complexities.

•	 Scalability and Flexibility: It allows for easy scaling
of Hadoop and Spark clusters based on data processing
requirements. Data Engineering Program Managers can

Citation: Mahesh Deshpande, Ipsita Nanda (2023) Empowering Data Programs: The Five Essential Data Engineering Concepts for Program Managers. Journal of
Engineering and Applied Sciences Technology. SRC/JEAST-341. DOI: doi.org/10.47363/JEAST/2023(5)235

 Volume 5(3): 9-12J Eng App Sci Technol, 2023

dynamically adjust the number and size of nodes in the cluster
to handle varying workloads, ensuring optimal performance
and cost efficiency.

•	 Integration with Cloud Ecosystem: It helps seamlessly
integrate with other cloud services, such as storage, data
warehousing, and real-time data ingestion, enabling setting
up of end-to-end data processing pipelines and leveraging
the full potential of the cloud ecosystem.

•	 Cost Optimization: Managed services provide cost-effective
options for running Hadoop and Spark clusters, with the
ability to pay only for the resources used. Program Managers
can optimize costs by leveraging features like autoscaling,
spot instances, and transient clusters, which automatically
adjust resources based on workload demands.

•	 Focused on Data Processing and Analytics: By offloading
the infrastructure management to the cloud provider, Data
Engineering Program Managers can dedicate more time and
resources to data processing and analytics. This allows for
faster time-to-market, improved data-driven decision-making,
and accelerated innovation within the organization.

Managed Hadoop and Spark services like Amazon EMR, Google
Cloud Dataproc, and Azure HDInsight empower Data Engineering
Program Managers to harness the power of Big Data processing and
analytics in a simplified and cost-effective manner. By leveraging
these services, program managers can focus on delivering value
through data-driven initiatives, while the cloud provider takes care
of the underlying infrastructure and management complexities.

NoSQL Databases for Big Data
NoSQL databases are non-relational databases designed to handle
large volumes of unstructured, semi-structured, and structured
data. Unlike traditional relational SQL databases, NoSQL
databases provide flexible schemas, horizontal scalability, and
high performance for handling Big Data workloads. They are
particularly useful in scenarios where data is rapidly changing,
unstructured, and requires real-time processing. The two most
popular NoSQL databases are Cassandra and MongoDB

Apache Cassandra
Cassandra is a highly scalable, distributed NoSQL database
designed to handle large amounts of structured data across multiple
commodity servers. It provides high availability and fault tolerance
through its distributed architecture, with no single point of failure.
Cassandra uses a wide-column data model, where data is stored
in tables with rows and columns, but the columns can vary per
row. It offers linear scalability, allowing seamless addition of
new nodes to the cluster to handle increased data volume and
throughput. Cassandra excels in handling time-series data, such
as sensor data, logs, and metrics, making it suitable for IoT, real-
time analytics, and monitoring use cases [21].

Key	Benefits	of	Cassandra
•	 Real-Time Data Ingestion and Processing: Cassandra can

handle high-velocity data streams and perform real-time
analytics on the ingested data.

•	 Scalable Event Logging and Monitoring: Cassandra's
distributed architecture makes it suitable for storing and
analyzing large volumes of event logs and metrics.

•	 Real-Time Recommendation Engines: Cassandra can store
user profiles, preferences, and interaction data to power real-
time recommendation systems.

Key Limitations of Cassandra
•	 Limited Support for Complex Queries: Cassandra's query

language (CQL) has limited support for complex joins and
aggregations compared to SQL databases.

•	 Eventual Consistency: Cassandra prioritizes availability
and partition tolerance over strong consistency, which means
there may be a slight delay in data consistency across nodes.

•	 Lack of ACID Transactions: Cassandra does not support
full ACID (Atomicity, Consistency, Isolation, Durability)
transactions, which can be a limitation for certain use cases
requiring strict data consistency.

MongoDB
MongoDB is a document-oriented NoSQL database that stores
data in flexible, JSON-like documents called BSON (Binary
JSON). It provides a dynamic schema, allowing for easy
modification and evolution of data structures without requiring
predefined schemas. MongoDB supports rich queries, indexing,
and aggregation, enabling complex data retrieval and analysis. It
offers horizontal scalability through sharding, distributing data
across multiple servers to handle large data volumes and high read/
write throughput. MongoDB provides automatic failover and data
replication, ensuring high availability and data durability [22].

Key	Benefits	of	MongoDB
•	 Content Management Systems: MongoDB's flexible

document model makes it suitable for storing and managing
unstructured content, such as articles, videos, and user-
generated content.

•	 Real-Time Analytics: MongoDB's aggregation framework
and indexing capabilities enable real-time analytics on large
datasets.

•	 Mobile and Web Applications: MongoDB's flexible schema
and scalability make it a good fit for developing mobile and
web applications with evolving data models.

Key Limitations of MongoDB
•	 Lack of Strong Consistency: MongoDB prioritizes

availability and partition tolerance, which means there may
be a slight delay in data consistency across replicas.

•	 Limited Support for Transactions: While MongoDB
supports multi-document ACID transactions starting from
version 4.0, it may not be as mature as traditional SQL
databases in terms of transactional capabilities.

•	 Memory Usage: MongoDB's in-memory working set can
consume a significant amount of RAM, requiring careful
capacity planning and monitoring.

From a Data Engineering Program Manager's perspective,
understanding the strengths and limitations of NoSQL databases
like Cassandra and MongoDB is crucial for making informed
decisions about data storage and processing architectures. NoSQL
databases offer scalability, flexibility, and high performance for
handling Big Data workloads, but they may not be suitable for all
use cases, especially those requiring strong consistency, complex
transactions, or strict ACID properties.

When considering NoSQL databases, Data Engineering Program
Managers should evaluate factors such as data structure, scalability
requirements, query complexity, consistency needs, and integration
with existing data processing workflows. It's essential to align
the choice of NoSQL database with the specific requirements
of the Big Data initiative and ensure that the selected database
can effectively support the desired use cases while meeting

Citation: Mahesh Deshpande, Ipsita Nanda (2023) Empowering Data Programs: The Five Essential Data Engineering Concepts for Program Managers. Journal of
Engineering and Applied Sciences Technology. SRC/JEAST-341. DOI: doi.org/10.47363/JEAST/2023(5)235

 Volume 5(3): 10-12J Eng App Sci Technol, 2023

performance, scalability, and reliability expectations.

Additionally, Data Engineering Program Managers should consider
the skills and expertise of the team, as well as the availability of
resources and support for the selected NoSQL database. Proper
training, documentation, and best practices should be established
to ensure the effective utilization and management of NoSQL
databases within the organization's Big Data ecosystem.

Data Governance and Security
A Data Governance Framework involves a set of policies,
procedures, roles, and responsibilities that ensure the proper
management, security, quality, and use of an organization's data
assets. It provides a structured approach to defining, implementing,
and maintaining data governance practices throughout the data
lifecycle. For a Data Engineering Program Manager, understanding
and implementing a Data Governance Framework is crucial for
ensuring data integrity, compliance, and effective data management
[23]. The top 3 Areas of Data Governance are given below:

Data Audit and Quality Management
Data Audit and Quality Management are critical components
of a comprehensive data governance framework. They involve
processes, practices, and tools to ensure the accuracy, completeness,
consistency, and reliability of an organization's data assets. Data
Engineering Program Managers need to be well-versed in the
below aspects of Data Audit and Quality Management to ensure
the integrity and usability of data for downstream applications
and decision-making.

•	 Data Quality Assessment: Conduct regular data quality
assessments to identify data quality issues, such as missing
values, duplicates, inconsistencies, and use data profiling
techniques to analyze data patterns and distributions.

•	 Data Quality Rules and Standards: Establish data validation
rules to ensure data conforms to defined formats, ranges, and
create data quality scorecards or dashboards to measure and
monitor data quality metrics against defined standards.

•	 Data Cleansing and Transformation: Implement and
automate data cleansing processes to identify and rectify
data quality issues, such as removing duplicates, correcting
inconsistencies, and standardizing formats.

•	 Data Lineage and Traceability: Implement data lineage
tracking that documents the flow of data from source to target
systems, including any transformations applied, and enable
traceability of data quality issues to their root causes by
mapping data lineage and dependencies.

•	 Data Validation and Testing: Develop and execute data
validation tests to verify the accuracy, completeness, and
consistency of data at various stages of the data pipeline.
Implement data quality checks and controls at all points.

•	 Data Quality Monitoring and Alerting: Set up data quality
monitoring dashboards and alerts to proactively identify and
address data quality anomalies. Use statistical process control
techniques to monitor data quality metrics over time

•	 Data Quality Reporting and Communication: Generate
regular data quality reports to communicate data quality
findings and actions to relevant stakeholders, including
business users, data stewards, and executive sponsors.

Data Engineering Program Managers should work closely with
data governance teams, data stewards, and business stakeholders to
establish and maintain robust Data Audit and Quality Management

practices and should continuously assess and optimize data quality
processes to meet evolving business needs.

Version Control
Version control is a critical aspect of data governance that ensures
the integrity, traceability, and reproducibility of data assets and
related artifacts. It involves tracking and managing changes to data,
code, and documentation over time. GitHub, a popular web-based
platform built on top of Git, provides a powerful version control
system that can be leveraged for data governance purposes [24].
GitHub allows for version control in data governance through:

•	 Data and Code Versioning: GitHub allows to store and
version data files, such as CSV, JSON, or Parquet files, along
with the code that processes and analyzes the files. Each
version of a data file is tracked through commits, which are
snapshots of the repository at a specific point in time. With
GitHub, changes made to data files can be tracked including
who made the changes, when they were made, and what
specifically was modified.

•	 Data Pipeline Versioning: GitHub can be used to version
control data pipeline code, including scripts, configuration
files, and workflow definitions. By storing data pipeline
code in GitHub repositories, a single source of truth for
data pipelines can be maintained ensuring transparency and
reliability.

•	 Documentation and Metadata Management: GitHub
provides features such as readme files and data dictionaries for
storing and versioning documentation and metadata related
to the data assets.

•	 Collaboration and Access Control: GitHub facilitates
collaboration among team members through features like
pull requests, code reviews, and issue tracking. Access control
can be managed through GitHub's user roles and permissions,
ensuring that only authorized individuals can view, modify,
or contribute to specific data repositories.

•	 Branching and Merging: GitHub's branching and
merging capabilities allow for parallel development and
experimentation without affecting the main data or code
repository. Branches can be created to work on new features,
bug fixes, or data updates independently. This enables a
controlled approach to making changes to data pipelines.

•	 Auditing and Traceability: GitHub provides a detailed audit
trail of all activities and changes made to data and code
repositories. Each commit in GitHub includes information
about the author, timestamp, and a description of the changes
made, allowing for traceability and accountability.

•	 Integration with Data Governance Tools: GitHub can be
integrated with other data governance tools and platforms
to extend its capabilities. For example, you can integrate
GitHub with data cataloging tools to automatically extract
and synchronize metadata from data files stored in GitHub
repositories.

Implementing version control with GitHub as part of the data
governance strategy helps Data Engineering Program Managers
in ensuring the integrity, reliability, and transparency of data
assets and provides a structured approach to managing changes,
collaborating with team members, and maintaining a single source
of truth for the data ecosystem.

Data Security, Access Control, and Compliance
Data Security, Access Control, and Compliance are the final critical
component of a comprehensive Data Governance framework. They

Citation: Mahesh Deshpande, Ipsita Nanda (2023) Empowering Data Programs: The Five Essential Data Engineering Concepts for Program Managers. Journal of
Engineering and Applied Sciences Technology. SRC/JEAST-341. DOI: doi.org/10.47363/JEAST/2023(5)235

 Volume 5(3): 11-12J Eng App Sci Technol, 2023

focus on protecting sensitive data, ensuring authorized access,
and adhering to legal and regulatory requirements. As a Data
Engineering Program Manager, understanding these concepts is
crucial to safeguarding data assets and maintaining the trust of
stakeholders.

Data Security
Data security involves protecting data from unauthorized access,
theft, misuse, and damage. It includes implementing technical,
administrative, and physical controls to ensure the confidentiality,
integrity, and availability of data.

Key aspects of Data Security Include:
•	 Encryption: Encrypting sensitive data both at rest and in

transit to protect it from unauthorized access.
•	 Access Controls: Implementing stringent access controls to

ensure that only authorized individuals can access specific
data assets.

•	 Network Security: Securing the network infrastructure to
prevent unauthorized intrusions and data breaches.

•	 Data Backup and Recovery: Regularly backing up data
and having robust disaster recovery plans to protect against
data loss.

Access Control
Access control involves managing and restricting access to data
assets based on the principle of least privilege. It ensures that
individuals can only access the data they need to perform their
job functions and prevents unauthorized access.

Key Aspects of Access Control Include:
•	 Role-Based Access Control (RBAC): Defining user roles

and permissions based on job functions and granting access
accordingly.

•	 Authentication and Authorization: Implementing strong
authentication mechanisms (e.g., multi-factor authentication)
and authorization processes to verify user identities and
permissions.

•	 Auditing and Monitoring: Regularly auditing and monitoring
user access to detect and investigate any suspicious activities
or access violations.

•	 Data Masking and Anonymization: Applying data masking
or anonymization techniques to protect sensitive data while
allowing authorized access for specific purposes.

Compliance
Compliance refers to adhering to legal, regulatory, and industry-
specific requirements related to data protection and privacy. It
involves understanding and implementing the necessary controls
and processes to meet compliance obligations.

Key Compliance Frameworks and Regulations Include:
•	 GDPR (General Data Protection Regulation): A European

Union regulation that sets strict requirements for the collection,
processing, and protection of personal data of members of
the European Union [25].

•	 SOX (Sarbanes-Oxley Act): A U.S. federal law that
establishes requirements for financial reporting and internal
controls. It includes provisions related to data accuracy,
integrity, and retention.

•	 HIPAA (Health Insurance Portability and Accountability
Act): A U.S. law that sets standards for protecting sensitive
patient health information. It enables appropriate strict access
controls for healthcare data.

•	 PCI DSS (Payment Card Industry Data Security
Standard): A set of security standards for organizations that
handle credit card data. It mandates specific security controls
and practices to protect cardholder information.

By prioritizing Data Security, Access Control, and Compliance
as part of the Data Governance framework, Data Engineering
Program Managers can protect sensitive data, maintain the trust of
stakeholders, and avoid costly legal and reputational consequences.
It is essential to collaborate closely with cross-functional teams
and stakeholders to implement robust security measures, access
controls, and compliance processes throughout the data lifecycle.

Conclusion
In today's data-driven world, the role of data engineering program
managers is increasingly critical. By understanding and applying
the seven essential data engineering concepts discussed in this
article, program managers can effectively lead and manage data
engineering initiatives. From data architecture and storage to
data governance and security, each concept plays a vital role in
ensuring the success of data-driven projects.

Program managers who are well-versed in these concepts can make
informed decisions, communicate effectively with stakeholders,
and collaborate seamlessly with data engineering teams. They can
ensure that data infrastructure aligns with business objectives,
data quality is maintained, and data security and compliance
requirements are met. Moreover, staying current with the latest
trends and best practices in data engineering is crucial for program
managers. As big data technologies continue to evolve, program
managers must adapt and leverage new tools and techniques to
optimize data processing, storage, and analysis.

By combining a strong understanding of data engineering concepts
with effective project management skills, program managers can
drive innovation, improve decision-making, and create tangible
business value through data-driven initiatives. They can help
their organizations harness the power of data, gain competitive
advantages, and achieve strategic goals. In conclusion, data
engineering program managers play a pivotal role in bridging
the gap between technical expertise and business objectives. By
mastering the essential data engineering concepts and applying
them effectively, program managers can lead their organizations
towards a data-driven future, unlocking the full potential of data
and driving meaningful insights and outcomes.

References
1. Elmasri Ramez A, Shamkant B Navathe (2017) Database

System Concepts and Architecture. Fundamentals of Database
Systems, Pearson, Boston i Pozostałe https://asolanki.co.in/
wp-content/uploads/2019/02/Fundamentals_of_Database_
Systems_6th_Edition-1.pdf.

2. Sadalage Pramod J, Martin Fowler (2012) NoSQL Distilled:
A Brief Guide to the Emerging World of Polyglot Persistence.
Addison-Wesley Professional https://bigdata-ir.com/wp-
content/uploads/2017/04/NoSQL-Distilled.pdf.

3. Zhang H, Chen G, Ooi BC, Tan KL, Zhang M (2015) In-
memory big data management and processing: A survey.
IEEE Transactions on Knowledge and Data Engineering
27: 1920-1948.

4. Jensen SK, Pedersen TB, Thomsen C (2017) Time series
management systems: A survey. IEEE Transactions on
Knowledge and Data Engineering 29: 2581-2600.

5. Johnson J, Douze M, Jégou H (2021) Billion-scale similarity

Citation: Mahesh Deshpande, Ipsita Nanda (2023) Empowering Data Programs: The Five Essential Data Engineering Concepts for Program Managers. Journal of
Engineering and Applied Sciences Technology. SRC/JEAST-341. DOI: doi.org/10.47363/JEAST/2023(5)235

 Volume 5(3): 12-12J Eng App Sci Technol, 2023

Copyright: ©2023 Mahesh Deshpande. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

search with GPUs. IEEE Transactions on Big Data 7: 535-547.
6. Beaulieu A (2020) Learning SQL: Generate, Manipulate,

and Retrieve Data. O'Reilly Media https://www.oreilly.com/
library/view/learning-sql-3rd/9781492057604/.

7. Wes McKinney (2017) Python for Data Analysis. Data
Wrangling with Pandas, NumPy, and IPython https://www.
oreilly.com/library/view/python-for-data/9781491957653/.

8. Armbrust M, Fox A, Griffith R, Joseph AD, Katz R, et al.
(2010) A view of cloud computing. Communications of the
ACM 53: 50-58.

9. Kilcioglu C, Rao JM (2016) Competition on price and quality
in cloud computing. In Proceedings of the 25th International
Conference on World Wide Web 1123-1132.

10. Data Transfer Service. AWS Datasync – AWS https://aws.
amazon.com/datasync/.

11. Hoberman Steve (20017) Data Modeling Made Simple: A
Practical Guide for Business & IT Professionals. Technics
Publications https://technicspub.com/data-modeling-made-
simple/.

12. Database Design Tool. Lucidchart https://www.lucidchart.
com/pages/examples/database-design-tool.

13. Dehghani Zhamak (2019) How to Move beyond a Monolithic
Data Lake to a Distributed Data Mesh. Martinfowler.Com
https://martinfowler.com/articles/data-monolith-to-mesh.html.

14. Jeffrey Richman (2023) Top 6 Data Mesh Tools and Companies.
Estuary https://estuary.dev/data-mesh-tools/#databricks.

15. Levene Mark, George Loizou (2003) Why Is the Snowflake
Schema A Good Data Warehouse Design?. Information
Systems 28: 225-240.

16. Kimball Ralph, Joe Caserta (2009) The Data Warehouse
ETL Toolkit Practical Techniques for Extracting, Cleaning,

Conforming, and Delivering Data. Wiley https://nibmehub.
com/opac-service/pdf/read/The%20Data%20Warehouse%20
ETL%20Toolkit%20_%20Practical%20Techniques%20
for%20Extracting-%20Cleaning-.pdf.

17. Reeve April (2013) Data warehousing with real-time updates.
Managing Data in Motion 113-117.

18. Apache Airflow. Documentation https://airflow.apache.org/
docs/.

19. White Tom (2015) Hadoop: The Definitive Guide. 4th
Edition. O’Reilly Media https://www.oreilly.com/library/
view/hadoop-the-definitive/9781491901687/.

20. Chambers Bill, Matei Zaharia (2018) Spark: The
Definitive Guide: Big Data Processing Made Simple.
O’Reilly https://www.oreilly.com/library/view/spark-the-
definitive/9781491912201/copyright-page01.html.

21. Carpenter Jeff, Eben Hewitt (2020) Cassandra: The Definitive
Guide, 3rd Edition. O’Reilly Media, Inc https://www.oreilly.
com/library/view/cassandra-the-definitive/9781098115159/.

22. Chodorow Kristina (2013) MongoDB the Definitive Guide
2nd Edition https://www.oreilly.com/library/view/mongodb-
the-definitive/9781449344795/.

23. Ladley John (2020) Data Governance How to Design,
Deploy, and Sustain an Effective Data Governance Program.
Academic Press https://www.everand.com/book/239466636/
Data-Governance-How-to-Design-Deploy-and-Sustain-an-
Effective-Data-Governance-Program.

24. (2020) GitHub.Com Help Documentation. GitHub Docs
https://docs.github.com/en.

25. (2022) What Is GDPR, the EU’s New Data Protection Law?.
GDPR.Eu https://gdpr.eu/what-is-gdpr/?cn-reloaded=1.

