
J Arti Inte & Cloud Comp, 2022 Volume 1(2): 1-4

Review Article Open Access

Elasticsearch as a NoSQL Database for Fast Distributed Financial
Service Applications
Ananth Majumdar

Journal of Artificial Intelligence &
Cloud Computing

*Corresponding author
Ananth Majumdar, USA.

Received: June 03, 2022; Accepted: June 10, 2022; Published: June 22, 2022

ISSN: 2754-6659

ABSTRACT
This paper explores the implementation of Elasticsearch as a primary data store for fast, distributed financial service applications. It examines the
advantages of Elasticsearch in the context of financial services, including its scalability, high performance, flexible schema, and powerful search and
analytics capabilities. The study addresses key challenges encountered during implementation, such as eventual consistency, limited join capabilities, and
field limits, providing practical solutions based on real-world experience. The paper also discusses implementation strategies, focusing on data modeling
for complex financial instruments, query optimization, and performance tuning. By balancing Elasticsearch's strengths against its limitations, this case
study demonstrates how financial service organizations can leverage this technology to build more scalable, performant, and adaptable systems capable of
handling the increasing data volumes and real-time processing demands of modern finance.

Introduction
The Need for Advanced Database Solutions in Finance
In the rapidly evolving landscape of financial services, the need
for fast, scalable, and flexible database solutions has never been
more critical. Traditional relational databases, while robust and
reliable, often struggle to meet the demands of modern financial
applications that require real-time processing of vast amounts
of data with flexible schemas. Enter Elasticsearch, a distributed,
RESTful search and analytics engine that has gained significant
traction as a NoSQL database solution.

This paper explores the use of Elasticsearch as a primary data
store for fast, distributed financial service applications. We will
examine its key advantages, address the challenges encountered
during implementation, and provide insights from our real-world
experience in deploying Elasticsearch in a financial services
context.

Introduction to Elasticsearch
Elasticsearch is a distributed, open-source search and analytics
engine built on Apache Lucene. Originally developed by Shay
Banon in 2010, it has since become a core component of the Elastic
Stack, alongside Logstash and Kibana. While Elasticsearch was
initially designed as a search engine, its capabilities have expanded
significantly, making it a powerful solution for various use cases,
including as a primary data store for applications requiring fast,
scalable data access and analysis.

At its core, Elasticsearch is a document-oriented database that
stores complex data structures serialized as JSON documents. It
offers near real-time search and analytics capabilities, typically
with latency of one second or less from the time a document
is indexed until it becomes searchable. This speed is achieved

through its distributed nature and its use of inverted indices, which
allow for fast full-text searches.

Key Features of Elasticsearch Include
•	 Distributed Architecture: Elasticsearch is designed to be

horizontally scalable, allowing it to handle large volumes
of data by distributing it across multiple nodes in a cluster.

•	 RESTful API: It provides a comprehensive RESTful API
for indexing, searching, and managing data, making it easy
to integrate with various applications and programming
languages.

•	 Powerful Query DSL: Elasticsearch offers a flexible, JSON-
based query domain-specific language (DSL) that supports
complex queries, filters, and aggregations.

•	 Schema-less: While it allows for explicit mapping definitions,
Elasticsearch can also operate in a schema-less mode,
automatically detecting and mapping fields based on the
data it receives.

•	 Near Real-Time Operations: It provides near real-time
search and analytics capabilities, making it suitable for
applications that require quick access to large datasets.

•	 Built-in Analyzers: Elasticsearch includes a variety of built-
in analyzers for text processing, enabling powerful full-text
search capabilities.

•	 Aggregations: It offers a rich set of aggregation capabilities
for data analysis, including metrics, bucket, and pipeline
aggregations.

While traditionally associated with search-heavy applications
like e-commerce platforms or content management systems,
Elasticsearch has found its way into various other domains,
including log and event data analysis, application performance
monitoring, and, as this paper explores, financial services.

USA

Citation: Ananth Majumdar (2022) Elasticsearch as a NoSQL Database for Fast Distributed Financial Service Applications.SRC/JAICC-138.
Journal of Artificial Intelligence & Cloud Computing DOI: doi.org/10.47363/JAICC/2022(1)E138

J Arti Inte & Cloud Comp, 2022 Volume 1(2): 2-4

The combination of Elasticsearch's speed, scalability, and
flexibility makes it an attractive option for financial institutions
dealing with large volumes of complex, rapidly changing data.
As we will discuss in the following sections, these characteristics
align well with many of the data management challenges faced
in the financial sector, from real-time market data analysis to risk
assessment and regulatory reporting.

Advantages of Elasticsearch for Financial Services
Scalability
Elasticsearch offers several compelling advantages that make it
particularly well-suited for financial service applications. First and
foremost is its scalability. In an industry where data volumes are
constantly growing, Elasticsearch's ability to scale horizontally by
adding more nodes to distribute data and processing is invaluable.
This scalability ensures that as our financial data and query
loads increase, our system can easily adapt without significant
architectural changes.

High Performance
Another crucial advantage is Elasticsearch's high performance.
Its distributed architecture and inverted index structure enable
lightning-fast search and aggregation operations, even on large
datasets. This speed is essential in financial services, where
milliseconds can make a difference in decision-making processes.

Flexible Schema
The flexible schema of Elasticsearch, a hallmark of NoSQL
databases, proved to be a significant asset in our implementation.
Financial data structures can be complex and varied, and
requirements often change rapidly. Elasticsearch's schema-less
nature allowed us to adapt quickly to these changes without the
need for time-consuming database migrations.

A prime example of this flexibility was our implementation of
a task management system for Portfolio Administrators (PAs).
This system needed to handle a wide variety of tasks, including
monitoring cash flows, addressing guideline failures, processing
new account openings, and managing overdrafts. Each of these task
types required different information to be stored and displayed,
which would typically necessitate separate tables or complex
schema designs in a traditional relational database.

With Elasticsearch, we were able to store all these diverse tasks in
a single index. The flexible schema allowed us to add new fields
as required for each task type, without affecting the structure of
existing documents. This flexibility was crucial as it enabled us to:
• Maintain a consistent high-level workflow for all tasks

(claiming, actioning, and closing) while allowing for task-
specific data fields.

• Easily introduce new task types without schema modifications
or migrations.

• Implement subtasks for certain business needs, such as
aggregating cashflows for an account, by simply adding new
fields to the relevant documents.

• Adapt to evolving business requirements by adding or
modifying fields as needed, without disrupting existing
functionality.

This approach significantly reduced development time and
increased our agility in responding to new business needs. It
allowed us to focus on building features rather than managing
complex data structures, all while maintaining the ability to
perform powerful searches and analytics across the entire task
dataset.

Figure 1: Elasticsearch mapping for different tasks with same Java representation but two different indices

Citation: Ananth Majumdar (2022) Elasticsearch as a NoSQL Database for Fast Distributed Financial Service Applications.SRC/JAICC-138.
Journal of Artificial Intelligence & Cloud Computing DOI: doi.org/10.47363/JAICC/2022(1)E138

J Arti Inte & Cloud Comp, 2022 Volume 1(2): 3-4

Full-text Search Capabilities
While not initially a primary consideration, Elasticsearch's full-text
search capabilities have proven unexpectedly valuable.
Moreover, we found a particularly impactful use case for full-
text search in enhancing the user experience for our Portfolio
Administrators (PAs) and Portfolio Managers (PMs). We leveraged
Elasticsearch's powerful search capabilities to implement a
typeahead functionality for security searches. This feature proved
to be instrumental in the success of our application for several
reasons:

•	 Rapid Security Entry: Financial professionals often need
to quickly enter security information in their workflow. The
typeahead functionality allowed them to find and select the
correct security with minimal typing, significantly speeding
up their processes.

•	 Reduced Errors: By providing suggestions as users type,
we minimized the risk of data entry errors, which is crucial
when dealing with financial securities.

•	 Improved User Satisfaction: PAs and PMs expressed a
strong dislike for waiting and typing full security names or
identifiers. The quick, responsive search functionality directly
addressed this pain point, leading to higher user satisfaction
and adoption of the application.

•	 Handling Complex Security Names: Financial securities
often have long or complex names. Full-text search allows
users to find the correct security by typing any part of its name
or identifier, making the process more intuitive and flexible.

•	 Performance at Scale: Despite having a large database
of securities, Elasticsearch's efficient indexing and search
algorithms ensured that the typeahead functionality remained
fast and responsive, even as our data grew.

This implementation showcases how Elasticsearch's full-text
search capabilities can go beyond traditional document search
use cases and directly contribute to core functionality in financial
applications. By improving the speed and accuracy of security
lookups, we were able to streamline operations for our financial
professionals, demonstrating that seemingly small features can
have a significant impact on the overall success and adoption of
financial software [1].

Aggregations and Analytics
Elasticsearch's aggregation capabilities have been an added bonus,
allowing for complex data analysis essential for financial reporting
and risk assessment. The ability to perform advanced analytics
directly within the database, rather than exporting data to separate
analytics tools, has streamlined our processes considerably.
It was very helpful to improve the user experience by providing
aggregate stats for the tasks and task details.

Challenges and Solutions
Eventual Consistency
Despite its many advantages, implementing Elasticsearch as our
primary data store was not without challenges. The eventual
consistency model, while beneficial for performance, posed
potential issues in a financial context where data accuracy is
paramount. We addressed this by leveraging Elasticsearch's version
field and implementing optimistic locking at the application level.
This approach ensures that if an update operation is attempted with
an older version of a document, it fails, prompting the end-user
to update with the latest data [2,3].

Limited Join Capabilities
Another significant challenge was Elasticsearch's limited join
capabilities compared to traditional relational databases. To
overcome this, we adopted a denormalization strategy, aiming to
fit related data into single documents wherever possible.

Mapping and Field Limits
We also developed an innovative approach using multiple indices
for the same object. In one index, we defined fields in detail, while
in another, we defined them as objects. This strategy allowed us
to maintain a single Java representation while circumventing
Elasticsearch's limit of 1000 fields per index [4].

Reindexing for Mapping Changes
The need to reindex data when changing mappings was another
hurdle we had to overcome. We mitigated this by carefully planning
our data models upfront and using index aliases to switch between
different mappings. Reindexing operations were scheduled during
release windows to minimize disruption to our services.

Challenges Solutions
Eventual Consistency Version fields and optimistic

locking
Limited Join Capabilities Denormalization and multiple

indices approach
Field Limits Strategic use of object fields and

multiple indices
Reindexing for Mapping
Changes

Use of aliases and planned
reindexing during release
windows

Implementation Strategies
Our implementation strategy focused on careful data modeling to
balance normalization and performance needs. We paid particular
attention to handling complex financial instruments, often using
nested objects to represent intricate relationships within a single
document.

Query optimization was another key focus area. We implemented
various techniques to improve query performance, including the
strategic use of filter contexts, appropriate field mappings, and
regular performance testing and tuning.

For scaling and performance tuning, we adopted a set of best
practices including regular monitoring, optimizing cluster settings,
and implementing custom routing where appropriate to improve
shard usage.

Conclusion
In conclusion, our experience with Elasticsearch as a primary data
store for financial services applications has been largely positive.
The advantages of scalability, performance, and flexible schema
have more than compensated for the challenges we encountered.
While Elasticsearch required us to rethink some of our data
modeling and consistency approaches, it has enabled us to build
a more scalable, performant, and adaptable system.

As financial services continue to evolve and data volumes
grow, we believe that solutions like Elasticsearch will play an
increasingly important role. However, it's crucial to approach
such implementations with a clear understanding of both the
strengths and limitations of the technology. With careful planning
and appropriate strategies, Elasticsearch can serve as a powerful

Citation: Ananth Majumdar (2022) Elasticsearch as a NoSQL Database for Fast Distributed Financial Service Applications.SRC/JAICC-138.
Journal of Artificial Intelligence & Cloud Computing DOI: doi.org/10.47363/JAICC/2022(1)E138

J Arti Inte & Cloud Comp, 2022 Volume 1(2): 4-4

foundation for modern, high-performance financial service
applications.

References
1. Request Body Search, ElasticSearch Guide [6.8], Elastic.

(n.d.). Elastic https://www.elastic.co/guide/en/elasticsearch/
reference/6.8/search-request-body.html.

2. Optimistic concurrency control, Elasticsearch Guide [6.8],
Elastic. (n.d.). Elastic. https://www.elastic.co/guide/en/
elasticsearch/reference/6.8/optimistic-concurrency-control.
html.

3. Creating, indexing, and deleting a document, ElasticSearch:
The Definitive Guide [2.X], Elastic. (n.d.). Elastic https://
www.elastic.co/guide/en/elasticsearch/guide/current/distrib-
write.html.

4. Mapping, ElasticSearch Guide [6.8], Elastic. (n.d.). Elastic
https://www.elastic.co/guide/en/elasticsearch/reference/6.8/
mapping.html.

Copyright:©2022 Ananth Majumdar This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

