
 Volume 4(1): 1-3J Eng App Sci Technol, 20242

Review Article Open Access

Efficient Caching Mechanisms with Redis for Fuel Dispenser
Data

Software Engineer 2, Texas, USA

Rohith Varma Vegesna

*Corresponding author
Rohith Varma Vegesna, Software Engineer 2, Texas, USA.

Received: February 06, 2022; Accepted: February 13, 2022; Published: February 20, 2022

Keywords: Redis, AWS ElastiCache, Fuel Dispenser Data,
Automatic Tank Gauge, Real-Time Monitoring, Caching
Mechanism, Fuel Station Optimization, Database Performance,
Cloud Computing, High-Frequency Transactions

Introduction
Background
Fuel stations rely on real-time data from dispensers and Automatic
Tank Gauges (ATG) systems for various operational requirements,
including reconciliation, fraud detection, inventory management,
and compliance monitoring. The ATG plays a crucial role in
measuring fuel levels, detecting leaks, and ensuring regulatory
compliance, making it an integral component of fuel station
management.

Traditionally, fuel dispenser and ATG data have been stored in
relational databases, leading to latency issues when querying large
datasets. As fuel stations scale and the number of transactions
increases, database queries become a significant bottleneck,
slowing down critical operations like reconciliation and real-
time monitoring. The growing reliance on centralized data
processing further exacerbates these challenges, particularly when
handling multiple stations in a distributed environment. Moreover,
database-centric approaches require additional resources to ensure
data consistency and handle concurrent read-write operations
effectively.

Caching solutions such as Redis provide an efficient mechanism
to address these performance bottlenecks by enabling rapid data

retrieval while ensuring seamless data synchronization with
persistent storage. By leveraging Redis as an in-memory data
store, fuel station management systems can significantly reduce
query response times, improve scalability, and enhance the overall
efficiency of data-driven decision-making processes. The ability of
Redis to support high-throughput transactions makes it a suitable
candidate for real-time reconciliation between fuel dispensers and
ATG levels, allowing stations to operate with minimal delays and
increased accuracy.

Problem Statement
Current database-driven fuel monitoring solutions struggle with
high latency due to frequent read and write operations. Real-
time reconciliation of dispenser meters and ATG levels demands
an optimized approach where updated values can be accessed
quickly without overwhelming the database. The challenge lies
in designing a system that enables immediate access to updated
fuel metrics while ensuring data consistency and reliability.

Objectives
• Implement Redis as a caching mechanism for fuel dispenser

and ATG data.
• Utilize AWS ElastiCache to improve scalability and

availability.
• Ensure that transaction updates are immediately reflected in

Redis for real-time reconciliation and discrepancy detection
between fuel dispensers and ATG levels.

• Reduce dependency on database queries while maintaining
historical records.

ISSN: 2634 - 8853

Journal of Engineering and Applied
Sciences Technology

ABSTRACT
Fuel dispensers and Automatic Tank Gauge (ATG) generate real-time data that is essential for fuel station operations, including reconciliation, monitoring,
and reporting. ATGs play a crucial role in measuring fuel inventory levels, detecting leaks, and ensuring compliance with regulatory standards. The real-time
nature of ATG and dispenser data necessitates efficient processing and quick retrieval for operational efficiency and fraud prevention.

Traditional database-driven approaches for handling this data can introduce significant latency, particularly when processing high-frequency transactions
at large-scale fuel stations. Every fuel transaction updates dispenser meters and affects ATG readings, making it essential to have an optimized system that
provides instant access to this data while maintaining historical records for audits and compliance.

This paper explores the implementation of Redis as a caching mechanism to optimize real-time fuel dispenser and ATG data retrieval. By leveraging AWS
ElastiCache, we establish a low-latency, high-performance caching layer that enables instant access to fuel meter readings and tank levels. The proposed
approach enhances system efficiency by reducing database query overhead, minimizing load on primary storage, and ensuring that real-time data remains
accessible for reconciliation, reporting, and anomaly detection.

Citation: Rohith Varma Vegesna (2022) Efficient Caching Mechanisms with Redis for Fuel Dispenser Data. Journal of Engineering and Applied Sciences Technology.
SRC/JEAST-E173. DOI: doi.org/10.47363/JEAST/2022(4)E173

 Volume 4(1): 2-3J Eng App Sci Technol, 2022

• Improve dashboard performance by retrieving real-time data
from Redis instead of databases.

Literature Review
Several studies have explored caching techniques to enhance
system performance in high-frequency transactional environments.
Redis, an in-memory data store, has been widely adopted for its
low latency, high throughput capabilities, and ability to handle
large volumes of concurrent operations efficiently. Traditional
approaches primarily focused on database optimizations, such
as indexing and partitioning, to improve fuel data retrieval;
however, these methods often result in performance bottlenecks
when dealing with rapidly changing data from multiple sources.

In contrast, caching mechanisms like Redis significantly enhance
data access speed by storing frequently requested information in
memory, reducing the need for repeated database queries. This
ensures that fuel dispenser and ATG data can be accessed in near
real-time, allowing for seamless reconciliation and monitoring.
Additionally, the integration of AWS ElastiCache further optimizes
data distribution across multiple locations, minimizing network
latency and ensuring consistent performance across cloud-based
fuel monitoring systems. The ability of Redis to support key
expiration policies also enables efficient memory management,
preventing data overflow while ensuring up-to-date information
is always available. These factors make Redis a highly effective
solution for real-time data caching in fuel station environments.

System Architecture
• Fuel dispensers and ATG continuously send readings to the

central monitoring system.
• AWS ElastiCache (Redis) stores real-time dispenser meter

values and ATG levels, enabling side-by-side comparison
of dispenser transactions and ATG readings to detect
discrepancies.

• On every fuel transaction:
o The fuel meter reading is incremented in Redis.
o The system polls ATG for the latest fuel level.
o The updated values are stored in Redis for quick access.
• The backend service fetches real-time values from Redis to

update dashboards.
• Periodic synchronization ensures data consistency with the

primary database.

Implementation Strategy
The implementation follows a modular approach where Redis is
integrated into the existing fuel monitoring infrastructure:
•	 Data Ingestion: Fuel dispensers and ATG send data through

a message queue (e.g., AWS SQS or Kafka) to the backend
system.

•	 Caching Layer: Redis is configured as an in-memory store
using AWS ElastiCache with replication for high availability.

•	 Real-Time Updates: Every transaction triggers an update

to Redis values, ensuring dispenser meter readings and ATG
levels remain current. If discrepancies arise between the
ATG-reported fuel levels and dispenser transactions, alerts
can be generated for further investigation.

•	 Data Synchronization: A scheduled job periodically persists
Redis data to the primary database for historical analysis.

•	 Dashboard Integration: API endpoints fetch real-time data
from Redis, reducing database query loads.

Case Study & Performance Evaluation
A pilot implementation was conducted at a multi-station fuel
network to assess the impact of Redis-based caching on system
performance compared to traditional database query methods.
The evaluation focused on multiple key performance indicators,
including data retrieval latency, transaction processing efficiency,
and dashboard response speed before and after implementing
Redis. The pilot involved real-time fuel dispenser and ATG data
processing across multiple stations, where transaction logs and
fuel level updates were continuously monitored. The Redis-
based caching mechanism was designed to ensure that frequently
accessed data, such as fuel dispenser readings and ATG levels,
was stored in-memory, reducing the need for repetitive database
queries. Additionally, alert mechanisms were implemented to detect
discrepancies between ATG readings and dispenser transactions,
enabling proactive anomaly detection. The study measured
improvements in system response times, scalability, and the ability
to handle concurrent requests without performance degradation,
ultimately demonstrating the advantages of integrating Redis with
AWS ElastiCache in fuel monitoring systems.

Results and Discussion
Pilot Implementation
The implementation demonstrated significant improvements in
fuel station monitoring efficiency. The response time for retrieving
real-time dispenser readings dropped from an average of 450ms
to 20ms. Additionally, database query loads were reduced by
approximately 70% due to offloading frequently accessed data
to Redis [1-9].

Performance Metrics
•	 Transaction Latency: Reduced from 500ms to 30ms.
•	 Dashboard Load Time: Improved by 85%.
•	 Database Query Reduction: 70% of read operations were

served by Redis.
•	 System Uptime: Maintained 99.99% availability using AWS

ElastiCache replication.

Conclusion and Future Work
This paper demonstrated the effectiveness of Redis as a caching
mechanism for real-time fuel dispenser and ATG data. By
leveraging AWS ElastiCache, fuel stations can significantly reduce
latency, improve dashboard performance, and ensure efficient
reconciliation of fuel meters. Future work will focus on enhancing
data consistency strategies between Redis and persistent databases,
as well as integrating machine learning algorithms for predictive
fuel level monitoring.

References
1. AWS (2019) Performance at Scale with Amazon ElastiCache

https://d0.awsstatic.com/whitepapers/performance-at-scale-
with-amazon-elasticache.pdf.

2. Kavitha C, Anita X, Shirley Selvan (2021) Improving the
Efficiency of Speculative Execution Strategy in Hadoop Using
Amazon ElastiCache for Redis 16: 4864 - 4878.

Citation: Rohith Varma Vegesna (2022) Efficient Caching Mechanisms with Redis for Fuel Dispenser Data. Journal of Engineering and Applied Sciences Technology.
SRC/JEAST-E173. DOI: doi.org/10.47363/JEAST/2022(4)E173

 Volume 4(1): 3-3J Eng App Sci Technol, 2022

Copyright: ©2022 Rohith Varma Vegesna. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

3. Jinhwan Choi, Yu Gu, Jinoh Kim (2020) Learning-based
dynamic cache management in a cloud, Journal of Parallel
and Distributed Computing 145: 98-110.

4. Daniel House, Heng Kuang, Kajaruban Surendran, Paul
Chen (2021) Toward Fast and Reliable Active-Active Geo-
Replication for a Distributed Data Caching Service in the
Mobile Cloud, Procedia Computer Science 191: 119-126.

5. Ayaz Ali Khan, Muhammad Zakarya (2021) Energy,
performance and cost efficient cloud datacentres: A survey,
Computer Science Review 40: 100390.

6. Frank Rosner (2018) Sensor Data Processing on AWS using
IoT Core, Kinesis and ElastiCache https://dev.to/frosnerd/
sensor-data-processing-on-aws-using-iot-core-kinesis-and-
elasticache-26j1.

7. Shawn Adams (2019) Using DynamoDB Streams with
Lambda and ElastiCache https://dev.to/rocksetcloud/custom-
live-dashboards-on-dynamodb-using-dynamodb-streams-
with-lambda-and-elasticache-17cd.

8. Arun Kumar (2021) How to connect to ElastiCache Redis
https://dev.to/aws-builders/how-to-connect-to-elasticache-
redis-5465.

9. Harris Geo (2021) AWS Learn In Public Week 3, EBS, EFS,
RDS and ElastiCache https://dev.to/harrisgeo88/aws-learn-
in-public-week-3-ebs-efs-rds-and-elasticache-75b.

