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ABSTRACT
The magnetization of antiferromagnetic nanoparticles is investigated with the Fokker-Planck equation describing the evolution of the distribution function 
of the magnetization of an nanoparticle. By solving this equation numerically, the relaxation times, and dynamic susceptibility are calculated for dc field 
orientations across wide ranges of frequencies, amplitude of the fields and damping. Analytic equation for the dynamic susceptibility is also proposed. It is 
shown that the damping alters the magnetization in the presence of oblique field applied.
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Introduction
Ferromagnetic particles are categorized by thermal instability of 
their magnetization causing in natural change in their orientation 
from one metastable state to another by overcoming energy barriers, 
giving rise to superparamagnetism [1-3]. The thermal instability of 
magnetization in antiferromagnetic nanoparticles, may differ from 
that of ferromagnetic nanoparticles due to the intrinsic properties of 
antiferromagnetic materials [4, 5]. The theory of antiferromagnetic 
nanoparticles was advanced by Néel, who established that total 
magnetic compensation of the sublattices in antiferromagnetic 
nanoparticles is not possible for a number of reasons, namely, 
unequal numbers of spins in crystal planes, spin frustration near 
the surface, lattice defects, etc [6, 7]. Hence, an equilibrium 
magnetization should ensue in such particles, moreover, they 
should become superparamagnetic at a finite temperature just as 
ferromagnetic nanoparticles. According to Néel, the so-called 
superantiferromagnetism arises in a nanoparticle with an even 
number of sublattice planes, causing an appreciable increase in 
transverse susceptibility in comparison to that of a massive sample 
[6, 7]. An understanding the dynamics of the magnetization of the 
antiferromagnetic particles is essential owing to their role played 
in various areas of science and technology such as spintronics, 
biomedical applications, catalysis, etc [4].

The treatment of the fluctuations of the magnetization of 
nanoparticles due to Néel based on classical transition state 
theory was further developed by Brown and is therefore known 
as the Néel-Brown theory [1, 8, 9]. This tools utilizes the classical 
theory of Brownian motion with the Landau-Lifshitz-Gilbert 
equation augmented by white noise fields as Langevin equation 
governing the stochastic magnetization dynamics [10]. This 
equation is then used to obtain the Fokker-Planck equation 
describing the time evolution of the probability density function 

of magnetization orientations. At temperatures much lower than 
TN, this theory may be adapted to antiferromagnetic nanoparticles 
as has been suggested by Raikher and Stepanov in connection 
with the low-frequency magnetodynamics of antiferromagnetic 
nanoparticles suspended in a fluid by means of a kinetic model 
for the magnetization relaxation in the high magnetic anisotropy 
limit [4]. For an antiferromagnetic particle subjected to a dc 
magnetic field H, the magnetic moments of the sublattices   and   
are given by [4].

where MS is the sublattice magnetization in a bulk,   is a parameter 
characterizing the induced magnetic moment of the particle,   is 
the unit vector along the decompensation magnetic moment  , and 
v is the particle volume. The free energy of the particle subjected 
to a dc magnetic field H applied at an angle to the easy axis is

                                                                                               (1)

where ϑ and φ  are the polar and azimuthal angles of the spherical 
coordinate system, β = (kT)-1, k is Boltzmann’s constant, T is the 
temperature in Kelvin, σ = v β K is the barrier, K is the anisotropy 
constant, h = μH / (2vK) is the applied field parameter, ζ = vχA 
/ βμ2 is the "antiferromagnetic" parameter, and γ1, γ2, γ3 are the 
direction cosines of the vector H. As long as the magnetic field H 
is much weaker than the exchange field, the only possible motion 
of the vector μ is rotation which may be treated using the Brown 
model [8, 9]. Thus the magnetization dynamics are governed by 
a Fokker-Planck equation for the probability density function W 
(μ, t)   of μ, viz.,
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                                                                                            (2)

where LFP is the Fokker-Planck operator given in ref, τN is the free 
diffusion time of the magnetization, and α  is the dimensionless 
damping parameter [8].

When a dc magnetic field parallel to the easy axis of the particle, 
i.e., γ1= γ2 = 0, γ3=1, the free energy Eq. (1) is independent of the 
azimuthal angle φ. Due to axial symmetry, no dynamical coupling 
between the longitudinal and the transverse modes of motion exists 
so that for the longitudinal relaxation Eq. (2) reduces to a single-
variable Fokker-Planck equation for the distribution function 
W (ϑ, t) namely [4, 11],

                                                                                           (3)	

This axially symmetric case has been considered recently by 
Raikher and Stepanov; by solving Eqs. (2) and (3), they have 
calculated numerically the longitudinal and transverse dynamic 
susceptibilities and corresponding integral relaxation times [4].

The goal of the present paper is to study the relaxation of the 
magnetization of antiferromagnetic nanoparticles subjected 
to a Oblique dc magnetic field applied. We present results of 
calculations of the longitudinal complex magnetic susceptibility 
χ(ω) of a antiferromagnetic particle and characteristic relaxation 
times of the magnetization in broad temperature and damping 
ranges. In particular, we calculate the reversal, effective, and 
integral relaxation times which characterize, respectively, the long, 
short, and overall behavior of the magnetization. The calculations 
are mainly accomplished by using the matrix continued fractions, 
however, simple analytic equations for the low and high-frequency 
parts of the spectrum χ(ω)  and relaxation times are also obtained 
[10]. In the low temperature limit, our numerical calculation for the 
reversal time of the magnetization τ agrees with  analytic estimates 
of Ouari et al [11]. who have evaluated τ of antiferromagnetic 
nanoparticles by adapting the Kramers escape rate theory to fine 
ferromagnetic particles given by Coffey et al [12-14]. We remark 
in passing that in the limiting case ζ=0, the free energy from Eq. 
(1) reduces to that of uniaxial superparamagnets; this case has 
been treated in Refs [10,15-19].

Basic Equations
A Strong theoretical description of the relaxation of the 
magnetization in antiferromagnetic nanoparticles can be given 
by linear response theory. Here it is supposed that a particle in 
the presence of a strong uniform magnetic field H is subjected 
in addition to a small probe field H1 [β (μ·H1) ⁫1] parallel to H. 
Then the decay of the longitudinal component of the averaged 
magnetization                           of the particle, when the field H1  
has been switched off at time t = 0, is [10]   

                                                                                      (4)

where C⁫ (t) is the normalized relaxation (correlation) function 
of the longitudinal component of the magnetization defined as

                                                                                      (5)

λk are the eigenvalues of the Fokker-Planck operator LFP in Eq. (2),
 
                                                                    is the static susceptibility 
  
of the particle, and the brackets      and        denote the nonequilibrium 
and equilibrium ensemble averages, respectively. The equilibrium 
ensemble averages are defined as    

                                                        (Z is the partition function). 
Having determined, C⁫ (t) one can calculate the longitudinal 
dynamic susceptibility of the particle                                   given 
by [10].     

                                                                                           (6)

The dynamic susceptibility characterize the response of the particle 
to a weak ac probe field H1 (t) = H1 Cos ωt viz.,

Both  χ′ (ω) and χ′′ (ω) can be measured experimentally.

The asymptotic behavior of χ (ω) in the extremes of very low and 
very high frequencies is

                                                                                          (7)

where

                                                                                          (8) 

We remark that the relaxation times so defined τcor  and τef  
parameterize the time behavior of  C(t). The integral relaxation 
time τcor which can be also defined as the area under C⁫(t), viz., [10]

                                                                                          (9)

characterizes the overall behavior of C(t) while the effective 
relaxation time τef yields precise information on the initial decay 
of C(t), namely,

                                                                                         (10)

The relaxation times τcor and τef contain contributions from all the 
eigenvalues λk of the Fokker-Planck operator LFP. The smallest 
nonvanishing eigenvalue λ1 is associated with the slowest interwell 
(or overbarrier) relaxation mode and so with the reversal time of 
the magnetization τ = 1/ λ1; the other eigenvalues λk characterize 
high-frequency “intrawell” modes. The dependences of the 
effective relaxation time τef on the model parameters (external 
field, anisotropy constants) may differ considerably from that of 
τcor  and τ  as τef  is not governed by λ1. The effective relaxation time  
τef can also be expressed in terms of equilibrium averages as [10].

                                                                                         (11)

where  μ = cosψ cosϑ + sinψ sinϑ cosφ. Here and below without 
loss of generality it is supposed that the field H is in the xz plane 

1
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so that the direction cosines in Eq. (1) are γ1 = sin ψ, γ2 =0, and 
γ3= cos ψ, where ψ  is the angle between H  and the Z axis is taken 
as the easy axis of the particle.

The reversal and integral relaxation times can be used to evaluate 
the low-frequency dynamics of the magnetization using a single 
mode approximation [10]. According to this approximation, 
the dynamic susceptibility χ (ω) given as an infinite series of 
Lorenzians, Eq. (6), may be approximated at low frequencies by 
a single Lorentzian [10].

                                                                                         (12)

guaranteeing the correct asymptotic behavior of χ (ω) at low 
frequencies ωτ<1  [cf. Eq. (7)].

Calculation of the Observables
By applying the method of solution of the Fokker-Planck equation 
(2) developed in Ref., one can obtain 25 terms differential-
recurrence equation for the relaxation functions governing the 

	                                dynamics of the magnetization, viz 

[20].,

                                                                                      
                                                                                       (13)
  

where Yl,m (ϑ, φ) are the spherical harmonics and dl,m,l',m' are the 
matrix elements of the Fokker-Planck operator in Eq. (2). Details 
of the derivation of Eq. (13) for an arbitrary free energy V (ϑ, φ)  
are given in Refs. 10 and 20. The dl,m,l',m' for V (ϑ, φ) from Eq. (1) 
are listed in Appendix A.

Equation (13) can be solved exactly for the one-sided Fourier 

transforms                                        by matrix continued fractions 

(see Appendix A). Having determined           , we can evaluate the 

spectrum                                     of the longitudinal relaxation 

function         as

                                                                                            (14)

as well as the dynamic susceptibility χ (ω) from Eq. (6), where 
the static magnetic susceptibility χ is given by

Moreover, by using matrix continued fractions, we can also 
evaluate the integral relaxation time
                                                                                           (15) 

 and the smallest nonvanishing eigenvalue λ1 of the Fokker-Planck 
operator and consequently the reversal time τ = 1/ λ1 (see Appendix 
A).

Now the smallest nonvanishing eigenvalue λ1 characterizes the 
slowest overbarrier relaxation mode and, hence, the long-time 

behavior of the magnetization. In order to find a low temperature 
(high barriers) asymptotic estimate for λ1 of the Fokker-Planck 
operator LFP in Eq. (2), Brown and Smith and De Rozario adapted 
to magnetic relaxation an ingenious method originally proposed by 
Kramers for thermally activated escape of point Brownian particles 
from a potential well [9, 21, 12, 13]. Thus they estimated the 
superparamagnetic relaxation time   in the so-called intermediate-
to-high damping (IHD) limit (α > 1). Later, Klik and Gunther 
derived the corresponding formula for τ in the very low damping 
limit (α > 1) [22, 23]. Finally, Coffey et al. have obtained the 
asymptotic formula for τ which is valid all values of damping 
[14]. The results of Coffey et al. agree closely with numerical 
solutions of the Fokker-Planck Eq. (2) and Langevin dynamics 
simulations of the magnetization reversal time for a variety of 
magnetocrystalline anisotropy potentials (cubic, biaxial, etc.); 
they also have been successfully compared with experiments on 
the angular variation of the switching field for individual Co and 
BaFeCoTiO particles [14, 18, [24-28]]. For antiferromagnetic 
nanoparticles with the free energy, Eq. (1), the reversal time of 
the magnetization τ  have been estimated analytically by Ouari et 
al. [11] using the approach of Coffey et al. [14] as

                                                                                         (16)

where τIHD is the reversal time in the IHD limit, α > 1, S1,2 are the 
dimensionless actions, and A (δ) is the so called depopulation 
factor (equations for τIHD, A, and S1,2 are given in Ref. ) [14, 11].

For the axially symmetric case, γ1= γ2=0, γ3 = 1, all equations 
for the relaxation times can be simplified. So using the mean 
first passage method, Ouari et al. have derived from Eq. (3) the 
analytic equation for the reversal time   in the low temperature 
limit, viz [11],

                                                                                              (17)

where                      is an effective anisotropy constant. For axial 

symmetry, Eq. (16) is no longer valid. If the departures from axial 
symmetry are small, the nonaxially symmetric asymptotic Eq. (16) 
for the reversal time may be smoothly connected to the axially 
symmetric results Eq. (17) by means of suitable bridging integrals 
[14]. Yet another method of treatment of the uniaxial-nonuniaxial 
crossover, which does not need bridging integrals, was proposed 
by Usov [29]. Now, since the dynamics of the system are governed 

by a single variable ϑ, the integral relaxation time 

can also be calculated from the analytic equation as (see, Ref. 10, 
Chap. 2, Sec. 2.10 for details)

                                                                                              (18)

where βV (z) = ‒σ' z2 ‒ ξ z, z = cosϑ, ξ = βμH  is the external field 
parameter,

                                                                                            (19)

                                                                                            (20)      

, ( )l mc ω
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is the partition function,                       , and 

is the error function of imaginary argument. Finally, the effective 
relaxation time τef  from Eq. (11)is given by

                                                                                        (21)
 

where               and                are defined by Eqs. (19) and (20), 

respectively.
 
Results and Discussion
The inverse of the smallest nonvanishing eigenvalue of the 
Fokker Planck equation λ1

-1, the integral relaxation time τcor (both 
calculated with the matrix continued fraction method), and the 
reversal time τ predicted by Eq. (16) as functions of the anisotropy 
(or the inverse temperature) parameter σ are shown in Fig. 1 for 
various values of the external field parameter parameters h. As 
is apparent from Fig. 1, with increasing h, the integral relaxation 
time τcor may have a behavior dramatically different from that ofλ1

-1   
above certain critical values of the parameters hc. In particular, 
if the dc field parameter h exceeds hc nevertheless well below 
that destroying the bistable potential structure of the potential, 
then τ may differ exponentially from τcordue to the so-called 
depletion effect [30]. This effect is qualitatively similar to that for 
ferromagnetic nanoparticles [10, 30]. The integral relaxation time  
τcor as functions of the antiferromagnetic parameter ζ calculated 
numerically by the matrix continued fraction method are shown 
in Fig. 2 for various values of the oblique angle ψ. This figure 
demonstrates that the variations in the antiferromagnetic parameter   
ϛ have a very pronounced effect on the relaxation process.

Figure 1

Figure 2

Figures 3 and 4 illustrate the results of the calculation of the 
imaginary part of the susceptibility                                for α=1   

(moderate damping) and various values of the model parameters 
σ, ψ and h, using the matrix continued fraction solution and the 
approximate Eq. (12). These figures indicate that at α >1 only 
two distinct dispersion bands appear in the spectrum of χ'' (ω) 
. The low frequency relaxation band of χ'' (ω) is dominated by 
the barrier crossing mode so that the characteristic frequency ω1 
and half-width ∆ω1 of this band are completely determined by 
the smallest nonvanishing eigenvalue. In addition, a far weaker 
second relaxation band appears at high frequencies. This relaxation 
band is due to the individual near degenerate high-frequency 
“intrawell” modes corresponding to the eigenvalues λk>> λ1. At 
low fields, the amplitude of this band is far weaker than that of 
the first band. However, in a strong magnetic field, this band can 
dominate in the spectrum χ'' (ω)   (Fig. 4a).

Figure 3

Figure 4

At low damping α<<1, there is an inherent geometric dependence 
of  χ'' (ω) on the value of α arising from the coupling of the 
longitudinal and transverse relaxation modes. This coupling 
appears in the dynamical equation of motion and results in the 
appearance of the third antiferromagnetic resonance peak in the 
spectrum of χ'' (ω) due to excitation of transverse (precessional) 
modes with characteristic frequencies close to the precession 
frequency of the magnetization (see Figs. 5-7). This peak appears 
only at low damping (α<<1)  and strongly manifests itself at high 
frequencies. As α decreases, the peak shifts to higher frequencies 
and its half-width decreases (in our normalized units, see Fig. 
5). Clearly, Figs. 5-7, the agreement between the numerical 
calculation and Eq. (12) is very good at low-frequencies because 
the low-frequency response is mainly determined by the over 
barrier relaxation mode.

/ (2 )h ξ σ′ ′= ( ) 2

0
erfi( ) 2 /

z tz e dtπ= ∫

0cosϑ〈 〉 2
0cos ϑ〈 〉

� ( )( ) Re Cχ ω χω ω ′′ =  �
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Figure 5

Figure 6

Figure 7

Our results demonstrate that variations in the bias field parameter 
h and antiferromagnetic parameter ζ significantly affect the 
magnetization relaxation process. These parameters are controlled, 
respectively, by the decompensation magnetic moment μ and χA 
parameter characterizing the induced magnetic moment of the 
particle. In our calculations, μ and χA were considered as model 
parameters. Conversely, μ can be estimated for randomly oriented 
spins as μ ~ z μB N

1/2, where z is the number of uncompensated 
spins per atoms, μB is the Bohr magneton, and N is the number of 
magnetic atoms [4]. Simple estimations show that the effective 
spontaneous magnetization of antiferromagnetic nanoparticles 
ranges from several tenths to several units of gauss, i.e., 
it is of the same order of magnitude as the magnetization of 
weak ferromagnets [4]. Furthermore, μ and χA as well as their 
temperature dependence can also be obtained experimentally 
from static magnetic measurements [31].

In conclusion, we have treated the longitudinal relaxation of 
the magnetization of antiferromagnetic particles subjected to 
a uniform external field H applied at an arbitrary angle to the 
easy axis of the particle (so that the axial symmetry is broken) 

using the kinetic model suggested by Raikher and Stepanov [4]. 
Numerically exact calculations of the observables (dynamic 
magnetic susceptibility, relaxation times of the magnetization, 
etc.) have been accomplished using an effective matrix continued 
fraction method. The main advantage of this method is that 
it allows us to evaluate the quantity of interest (χ(ω), etc.) in 
wide ranges of damping and temperatures including relatively 
high temperatures, where asymptotic approaches (like that due 
to Kramers) are no longer applicable. We have shown that the 
magnetization dynamics in the presence of thermal agitation 
are very sensitive to both the dc field strength and orientation 
and damping owing to the coupling between the precession of 
the magnetization and its thermally activated reversal over the 
saddle point. In particular, the pronounced damping and dc field 
dependence of   can be used to determine the damping coefficient 
α just as for uniaxial superparamagnets [19, 28]. Furthermore, 
we have shown that the simple analytic Eq. (12) provides an 
accurate description of the dynamic susceptibility (χ(ω)  of 
antiferromagnetic nanoparticles at low frequencies (ωτ< 1). This 
implies that the longtime behavior (τ<<t) of the longitudinal 
component of the magnetization             may be accurately 
approximated by a single exponential, viz.,                         

with the relaxation time τ from Eq. (16).

Here we have restricted ourselves to the study of a single particle. 
For practical applications, in order to account for the polydispersity 
of the particles of a real sample and the fact the particles are 
randomly oriented in space, one must also average the reversal 
time, dynamic susceptibility, etc., over appropriate distribution 
functions (averaging over particle volumes and orientations 
can be readily accomplished numerically using Gaussian 
quadratures). Our approach can also be used to estimate other 
physical parameters such as angular and temperature variations 
in the switching field of an individual nanoparticle and nonlinear 
dynamic susceptibilities. Furthermore, our results can be used 
to study stochastic resonance32 and dynamic hysteresis33 in 
antiferromagnetic nanoparticles which may differ essentially from 
those in fine ferromagnetic particles [32-37].
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Appendix A: Matrix Continued Fraction Solution
Equation (13) can be transformed into the tree-term vector 
recurrence equation

                                                                                           (A.1)

Here the column vectors Cn (t)  are arranged from Cn,m (t), viz.,

( )M t�

( )
0

~ exp( / )M t M t τ− −� �
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while the matrices Qn, Q
+

n, Q
-
n are defined as

                                                                                           (A.2)

In turn, the matrices Qn, Q
+

n, Q
-
n consist of submatrices Vl, Wl, Xl 

Yl, and Zl which have the dimensions (2l+1) X (2l-3), (2l+1) X 
(2l-1), (2l+1) X (2l+1), (2l+1) X (2l+3), and (2l+1) X (2l+5), 
respectively. The elements of these submatrices are expresseed 
in terms of the matrix elements of the Fokker-Planck operator  
d l,m, l', m' and are given by

where

The exact solution of Eq. (A.1) for the Laplace transform

                                     can be given in terms of matrix continued 

fractions [10]. 

                                                                                          (A.3)

the infinite matrix continued fraction ∆n (S) is defined by the 
recurrence equation

The initial value vectors  Cn (0)  can be evaluated in term of ∆n 
(0). Here we may apply with small modifications the algorithm 
developed for uniaxial anisotropy [10]. As shown in Ref. 10, Sect. 
9.2.2, the initial vectors Cn (0) are given by

where ξ1= βμH1, Sn = ∆n (0) Q-
n, the superscript H designed the 

Hermitian (i.e., transposition and complex) conjugate, and

The matrix Kn and       are constituted from the diagonal submatrix   
and the tridiagonal submatrix Fl  with the matrix elements defined 
as

with

The smallest nonvanishing eigenvalue λ1 of the Fokker-Planck 
operator can also be estimated by using matrix continued fractions 
from the secular equation as [10, 11].

                                                                                       (A.4)

In the low temperature limit, the behavior of λ1 must correspond 
to the Kramers escape rate so providing a numerical check on the 
asymptotic Eq. (16) for the reversal time τ ≈ 1/ λ1 [6, 23].

1 10
( ) ( ) sts t e dt

∞ −= ∫C C

�
nK
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