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Introduction
The Magnetics nanoparticles merit a big attention in view of their 
importance in the context of magnetic recording media [1, 2].  The 
pioneering theory of thermal fluctuations of the magnetization 
M(t) of a single domain magnetic particle due to Néel was 
further developed by Brown using the classical theory of the 
Brownian motion [3, 4]. Brown proceeded by taking as Langevin 
equation, Gilbert’s equation for the motion of the magnetization 
augmented by a random field [5, 6]. In the context of the Brown 
continuous diffusion model, the magnetization dynamics of 
magnetic nanoparticles is similar to the rotation of a Brownian 
particle in a liquid and is governed by a Fokker-Planck equation 
for the probability density function W of M [7]. The Fokker-
Planck equation is derived from Gilbert’s equation with a random 
field, which takes into account the thermal fluctuations of M in 
an individual Super-Paramagnetic nanoparticle [6]. Referring 
to magnetic relaxation in uniaxial particles, Brown estimated 
the reversal time of the magnetization   for the case when  H0 
is applied along the easy axis of the magnetization as (in our 
notation) [4, 5, 7].

                                                                                              (1)

where σ = βK and h= ξ / 2 σ are the dimensionless barrier and 
field parameters, respectively; ξ =βMS  H0,  β = v / (k T), v  is the 
volume of the particle, T is the temperature, k is the Boltzmann 
constant, MS is the saturation magnetization,

                                                                                              (2) 

is the free diffusion time of the magnetization, γ is the gyromagnetic 
ratio, and α  is the dimensionless damping (dissipation) parameter. 

Equation (1) in the low temperature (high barrier, σ>>1) limit only. 
Cregg et al. have derived an approximate equation for τ valid for 
all values of σ [8]. Aharoni and recently Coffey et al. and Klik and 
Yao. have reconsidered this problem [9,10 & 11]. They calculated 
τ numerically and demonstrated a good agreement of their results 
with the Brown Eq.(1).

By applying an uniform magnetic field H0 at an oblique angle 
ψ with respect to the easy axis, one can break the symmetry of 
the potential V, which will also depend on the azimuthal angle 
φ. In axially symmetric anisotropy Eq. (1) (with H0 parallel to 
the easy axis) the energyscape is a uniform equatorial ridge 
(zone) separating two polar minima and has no saddle points, 
on the other hand, the external field H0 generates azimuthally 
nonuniform energy distributions with a saddle point. Such a 
nonaxially symmetric energyscape leads to a new effect and 
strong intrinsic dependence of magnetics characteristics (such 
as the complex magnetic susceptibility and relaxation times) 
on the value of the damping parameter α arising from coupling 
of the longitudinal and the transverse relaxation modes. Ouari 
and Kalmykov estimated the longitudinal reversal time and the 
magnetic Susceptibility in Biaxial Super-Magnetic nanoparticles 
in the presence of longitudinal magnetic field H0 [12]. 
The biaxial (orthorhombic) anisotropy in the absence of DC 
magnetic field is [7]

                                                                                            (3)

Here, ∆  and  σ are the biaxiality and barrier parameters, respectively 
(∆=0  corresponds to uniaxial anisotropy), ϑ and φ are polar and 
the azimuthal angles of the spherical coordinate system.

In this paper we present the results of the magnetic susceptibility 
of Super-Paramagnetic-nanoparticles subjected to an oblique 
dc magnetic field H0 for wide ranges of the field strengths and 
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ABSTRACT
The Magnetic Susceptibility of an individual Super-Paramagnetic nanoparticle in a presence of DC Oblique magnetic fields of arbitrary amplitude is 
investigated using Brown’s continuous diffusion model. The susceptibility is calculated and compared when   for extensive ranges of the anisotropy, the dc 
magnetic fields in the very low damping with Matrix continued Fraction.  It is shown that the shape of the Spectrum of Super-Paramagnetic nanoparticles is 
substantially altered by applying a dc oblique field. There is also an inherent geometric dependence of the complex susceptibility on the damping parameter 
arising from coupling of longitudinal and transverse relaxation modes.
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anisotropy energy parameters in the very low damping. We 
calculate the complex magnetic Suceptibility χ (ω) using a matrix 
continued fraction method. The details of the calculation can be 
found in Ref [7-10]

Basic Equations
In the presence of an oblique DC magnetic field, the free energy 
density take the following form

                                                                                             (4)
where  ξ0 = βΗ0MS, MS is the saturation magnetization and γ1 = 
sinψcosϕ, γ2 sin ψ sin ϕ, γ3 cos ψ are the direction cosines of the 
vector H0. In spite of the practical importance of biax anisotropy, 
which may yield an essential contribution to the free energy 
density of magnetic nanoparticles, the orthorhombic case in the 
presence of an oblique external field has not yet been solved due 
to the mathematical difficulties encountered. 

In the context of Brown’s model, the dynamics of the magnetization 
M of a single domain Super-Paramagnetic nanoparticle may be 
described by Gilbert’s equation augmented by a random field h (t)  
with white noise properties accounting for the thermal fluctuations 
of the magnetization, viz [4, 5 & 6].,

                                                                                           (5)

Brown derived from the Gilbert-Langevin Eq. (5), the Fokker-
Planck equation for the distribution function W (M, t) of the 
orientations of the magnetization vector M

                                                                                           (6)

where LFP is the Fokker-Planck operator,      and Δ  are the gradient 
and Laplacian operators on the surface of unit sphere, u is the unit 
vector directed along  M. A detailed discussion of the assumptions 
made in the derivation of the Fokker-Planck and Gilbert equations 
is given in (Refs. 7-8-13).

A concise theoretical description of the magnetization dynamics 
in a super-paramagnetic nanoparticle can be given by linear 
response theory (Refs. 7-8-13). Here it is supposed that a Super-
Paramagnetic-nanoparticles in the presence of an Oblique 
magnetic field H0 is subjected in addition to a small probe field 
H1 [ β(MH1)   Then the decay of the averaged magnetization .[1 ‫ 
< M > (t) of the particle, when the field H1 has been switched off 
at time t = 0, is [7-13].

                                                                                         (7)

where C (t)  is the normalized relaxation (correlation) function of 
the longitudinal component of the magnetization defined as [13].

                                                                                         (8)

λk are the eigenvalues of the Fokker-Planck operator LFP  in Eq.(6),
                                              
                                             is the static susceptibility of the
particle, and the brackets        and       designate the nonequilibrium 
and equilibrium ensemble averages, respectively. The equilibrium 
ensemble averages are defined as
(Z is the partition function). Having determined C(t), one can 
calculate the oblique magnetic susceptibility of the particle                                   

                            given by [13].
 

                                                                                            (9)

According to Eq.(9), the behavior of χ(ω)  in the frequency domain 
is completely determined by the time behavior of C(t). All the 
calculation numerical methods is detailed in reference [12-13]

Results and Discussion
The magnetic susceptibility of single-domain Super-Paramagnetic 
Nanoparticles with biaxial anisotropy is given by the exact 
equation Eq.(9) formulated in terms of matrix continued fractions. 

In Figs. 2-4 we have plotted the results of the calculation of the 
imaginary part of the normalized susceptibility   ( )                            from 
Eq(9), in the presence (line) and an absence (dashed line) of DC 
magnetic oblique field. Here is plotted for typical values of the 
model parameters σ, Δ, ξ, in the very low damping α=0.005. The 
results indicate that a marked dependence of          on  α and ξ exists 
and that three distinct dispersion bands appear in the spectrum 
of         . The characteristic frequency ω1 and half-width Δω1 of 
the low-frequency band are completely determined by the smallest 
nonvanishing eigenvalue λ1 [7-13].

Thus the low frequency behavior of  χ (ω)  is dominated by the 
barrier crossing mode. In addition, a far weaker second relaxation 
peak appears at high frequencies. At the low fields, the amplitude 
of this band is far weaker then that of the first band. However, 
in magnetic oblique  field ξ this band can dominate in the , 1 ‫ 
spectrum (see Fig.2-4). It is evident from all the figures, that the 
spectra depend strongly on the damping parameter, the magnetic 
field and on the potential barrier. The Methods for obtaining 
experimental and theoretical estimates of are discussed, for 
example, in [14],

Just as in the absence of the bias field, there is an inherent geometric 
dependence of χ (ω) on the value of the damping parameter α = 
0.005 arising from the coupling of the longitudinal and transverse 
relaxation modes. This coupling appears in the dynamic equation 
of motion, where the longitudinal component of the magnetization   
‫c1, ± (t)  and results in c1,0 (t) is coupled with the moments ‫ 
the appearance of the third ferromagnetic resonance (FMR) peak 
in the spectrum of          due to excitation of transverse modes 
with characteristic frequencies close to the precession frequency 
of the magnetization  , where ωpr

H0=0  is the precession frequency 
at H0=0.

The FMR peak appears only at low damping (α<<1)  and strongly 
manifests itself at high frequencies. As α decreases, the FMR peak 
shifts to higher frequencies and its half-width decreases (in our 
normalized units, see Fig. 1-3).

The imaginary  and the real  parts of the susceptibility as functions 
of the anisotropy parameter σ is shown in Fig. 5, for various 
various value of the biaxiality parameter Δ. both in the absence 
(ξ<<1) and presence  (ξ >1)  of a DC oblique magnetic field. The 
calculations indicate that a marked dependence of χ (ω)  on the 
anisotropy σ, and the parameter of biaxiality Δ exists.

To conclude, a rigorous numerical calculation of the susceptibility 
of an individual Super-Paramagentic nanoparticle with biaxial 
anisotropy has been given using the matrix continued fraction 
method. The magnetic susceptibility as a function of the barrier   
σ and the frequency ω was investigated in the very low damping. 
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The magnetic process strongly depends on the DC oblique field, 
the damping, and the temperature. This dependence can be used 
in many applications like recording media. All the results have 
been given for the oblique field H0. The matrix continued fraction 
solution allows us to calculate all quantities of interest for an 
arbitrary orientation of H0.

Figure 1:  Effect of the oblique field on the Potential (Eq.5)  
(Δ = σ ψ=π/4 ξ =10-6 (left), ξ=5 (Middle),  ξ = (Right)).

Figure 2:  Imaginary part of the dynamic susceptibility - Im 
[χ(ω)]vs the dimensionless frequency ωτN  for various dc field 
barrier parameters σ .

Figure 3: Imaginary part of the dynamic susceptibility -Im [χ(ω)]
vs the dimensionless frequency   for various dc field parameters ξ .

Figure 4  Imaginary part of the dynamic susceptibility - Im [χ(ω)]
vs. the dimensionless frequency ωτN for various value of the 
angle ψ.

Figure 5 Imaginary part of the dynamic susceptibility - Im [χ(ω)]
vs. the dimensionless frequency   for various value of the biaxiality 
parameter  Δ.
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