
J Eng App Sci Technol, 2023 Volume 5(2): 1-4

Review Article Open Access

Dynamic Scaling of Application using Kubernetes Horizontal Pod
Auto Scaling

USA

Pallavi Priya Patharlagadda

Journal of Engineering and Applied
Sciences Technology

ISSN: 2634 - 8853

*Corresponding author
Pallavi Priya Patharlagadda, USA.

Received: April 03, 2023; Accepted: April 10, 2023; Published: April 24, 2023

ABSTRACT
To make sure that the pods have enough resources to run effectively without going overboard, Pod Autoscaling monitors the pods' usage patterns and
modifies their resource requests and restrictions accordingly. This keeps programs operating smoothly while maximizing resource use and reducing
expenses. In this paper, we shall look into the various types of autoscaling and the uses of using horizontal autoscaling (HPA).

Introduction
Currently, using many container instances in parallel is common
for application deployments. The most widely used platform for
coordinating and overseeing these container clusters at scale is
Kubernetes (K8s). Kubernetes clusters can effectively manage
workloads that require a lot of resources by utilizing the pod auto-
scaling feature, which is a unique resource definition.

Problem Statement
With the advent of cloud computing, majority of the cloud providers
are providing services like IaaS (Infrstructure as a Service), PaaS
(Platform as service) and Saas (Software as a service). These services
are modeled as Pay as You Go which means that we only pay for
what we use. If the application has more traffic, then the application
replicas or pods need to be increased to meet the requirements. If
the application is having less traffic then the number of application
replicas can be reduced. This scaling can be done manually but it
would take manual effort and time. Imagine a situation where the
traffic spike happen in the middle of the night of early in the morning.
We need to have a person monitoring it and then scale it immediately.
This would come with some cost. This paper discusses on how we
can solve this problem using Kubernetes Auto Scaling feature.

Kubernetes Auto Scaling:
With the help of Kubernetes autoscaling, a cluster can automatically
scale up or down in response to demand by modifying pod
resources or the number of nodes. Kubernetes can remove nodes
or provide fewer resources to a pod as demand declines, and the
cluster can add nodes or raise pod resources in response to demand
fluctuations. This can enhance performance and optimize resource
use and expenses.

Advantages of Pod Auto Scaling:
•	 Enhanced performance: Autoscaling makes sure your

application has the resources it needs to manage rising traffic
and prevent performance issues by dynamically raising the
number of pods based on demand.

•	 Cost	efficiency: By using auto-scaling, you only use the

resources you require, which can help cut down on the
expenses related to over- or under-provisioning resources.

•	 High	 availability: Auto scaling guarantees that your
application will always be accessible, even in the event of
unforeseen demand or spikes in traffic.

•	 Scalability: Autoscaling makes it simple and effective to
add more resources as your application expands to meet
growing demand.

Kubernetes autoscaling can be classified into three types,

Horizontal Pod Autoscaling (HPA): HPA is a Kubernetes feature
that allows the number of pod replicas to be automatically scaled
up or down in response to predefined metrics.

Vertical Pod Autoscaling (VPA): A Kubernetes feature that helps
deploy pods of the proper size and prevents resource use issues
on the cluster. Compared to other K8s autoscaling methods, VPA
has a stronger connection to capacity planning.

Cluster Autoscaling: a kind of autoscaling generally provided by
Kubernetes versions offered by cloud providers. When a pod is
waiting to be scheduled or when the cluster has to get smaller to
accommodate the existing number of pods, Cluster Autoscaling
can add and remove worker nodes dynamically.

Horizontal Pod Auto Scaling (HPA)
Now, let us delve deep into Horizontal Pod Autoscaling (HPA),
The HPA (Horizontal Pod Autoscaling) adds and removes pod
replicas automatically. This allows for the automatic management
of workload scaling when application usage varies.

HPA can be helpful for workloads that are stateful as well as
stateless. Under the supervision of the Kubernetes controller
manager, HPA functions as a control loop. By default, the HPA
loop lasts for 15 seconds, but the controller manager can supply a
flag to change that value. –horizontal-pod-autoscaler-sync-period
is the flag.

Citation: Pallavi Priya Patharlagadda (2023) Dynamic Scaling of Application using Kubernetes Horizontal Pod Auto Scaling. Journal of Engineering and Applied
Sciences Technology. SRC/JEAST-E107. DOI: doi.org/10.47363/JEAST/2023(5)E107

 Volume 5(2): 2-4J Eng App Sci Technol, 2023

The controller manager evaluates real resource use against the
metrics specified for every HPA following each loop period. It
gets these from the resource metrics API, or the custom metrics
API if you tell it to auto-scale based on resources per pod (such
as CPU usage).

HPA makes use of metrics to determine auto-scaling, as follows:
Resource metrics refers to the typical resource management
statistics that the Kubernetes metric server provides, such as
memory and CPU use metrics.

Custom metrics refers to request throughput, latency, dependency,
queue depth etc. Cluster administrators can install a metrics
collector, gather the required application metrics, and expose
them to the Kubernetes metrics server with the help of the custom
metrics API.

How does a Horizontal Pod Autoscaler work?

According to the goal metric value, the HPA resource updates
the deployment resource, as depicted in the diagram. Following
that, the number of replica pods operating will either increase or
decrease via the pod controller (Deployment).
Thrashing is one issue that can arise in these situations if there
is no contingency. When the workload stops reacting to previous
autoscaling actions before the HPA completes its next one, this is
known as thrashing. The HPA control loop prevents thrashing by
selecting the greatest pod count suggestion in the last five minutes.

The code excerpt illustrates the process of setting up an HPA
object and a Kubernetes deployment such that the deployment's
pods can automatically scale in response to CPU stress. This is
demonstrated step-by-step with commentary:
• The kubectl autoscale command
• The HPA YAML resource file
Create a namespace for HPA testing,
kubectl create ns hpa-ns
namespace/hpa-ns created
Create a deployment for HPA testing
cat example-app.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: hpa-demo
namespace: hpa-ns
spec:
selector:
matchLabels:

run: hpa-demo
replicas: 1
template:
metadata:
labels:
run: hpa-demo
spec:
containers:
- name: hpa-demo
image: k8s.gcr.io/hpa-example
ports:
- containerPort: 80
resources:
limits:
cpu: 500m
requests:
cpu: 200m

apiVersion: v1
kind: Service
metadata:
name: hpa-demo
namespace: hpa-ns
labels:
run: hpa-demo
spec:
ports:
- port: 80
selector:
run: hpa-demo

kubectl create -f example-app.yaml
deployment.apps/hpa-demo created
service/hpa-demo created

Verify that the pod is operating and that the deployment has been
made.
kubectl get deploy -n hpa-ns
NAME READY UP-TO-DATE AVAILABLE AGE
hpa-demo 1/1 1 1 22s

Use the kubectl autoscale command to construct the HPA once
the deployment has successfully launched. To keep the total CPU
consumption to 50%, this HPA will maintain a minimum of 1 and
a maximum of 5 replica pods during the deployment.
kubectl -n hpa-ns autoscale deployment hpa-demo --cpu-
percent=50 --min=1 --max=5
 horizontalpodautoscaler.autoscaling/hpa-demo autoscaled
The following Kubernetes resource would be created using the
declarative version of the same command.
apiVersion: autoscaling/v1
kind: HorizontalPodAutoscaler
metadata:
name: hpa-demo
namespace: hpa-ns
spec:
scaleTargetRef:
apiVersion: apps/v1
kind: Deployment
name: hpa-demo
minReplicas: 1
maxReplicas: 5
targetCPUUtilizationPercentage: 50
Examine the current state of HPA

Citation: Pallavi Priya Patharlagadda (2023) Dynamic Scaling of Application using Kubernetes Horizontal Pod Auto Scaling. Journal of Engineering and Applied
Sciences Technology. SRC/JEAST-E107. DOI: doi.org/10.47363/JEAST/2023(5)E107

 Volume 5(2): 3-4J Eng App Sci Technol, 2023

kubectl -n hpa-ns get hpa
NAME REFERENC TARGETS MINPODS MAXPODS
REPLICAS AGE
 hpa-demo Deployment/hpa-demo 0%/50% 1 5 1
17s
Since the operating application is not under any load at the
moment, the desired and existing pod counts are equal to 1.
kubectl -n hpa-ns get hpa hpa-demo -o yaml
apiVersion: autoscaling/v1
kind: HorizontalPodAutoscaler
metadata:
name: hpa-demo
namespace: hpa-ns
resourceVersion: "402396524"
selfLink: /apis/autoscaling/v1/namespaces/hpa-ns/
horizontalpodautoscalers/hpa-demo
uid: 6040eea9-0c2b-47de-9725-cfb78f17fe32
spec:
maxReplicas: 5
minReplicas: 1
scaleTargetRef:
apiVersion: apps/v1
kind: Deployment
name: hpa-demo
targetCPUUtilizationPercentage: 50
status:
currentCPUUtilizationPercentage: 0
currentReplicas: 1
desiredReplicas: 1
Now run the load test and see the HPA status again
kubectl -n hpa-ns run -i --tty load-generator --rm --image=busybox
--restart=Never -- /bin/sh -c "while sleep 0.01; do wget -q -O-
http://hpa-demo; done"
If you don’t see a command prompt, try pressing enter.
OK!OK!OK!OK!OK!OK!OK!OK!OK!OK!OK!OK!OK!OK!O
K!OK!OK!OK!OK!OK!OK!OK!OK!OK!OK!OK!OK!OK!OK
!OK!OK!OK!OK!OK!OK!OK!
kubectl -n hpa-ns get hpa
NAME REFERENCE TARGETS MINPODS
MAXPODS REPLICAS AGE
hpa-demo Deployment/hpa-demo 211%/50% 1 5 4
10m

Use CTRL-C to halt the load, and then check the HPA status once
again to see whether everything has returned to normal and if there
is just one replica operating.
kubectl -n hpa-ns get hpa

NAME REFERENCE TARGETS MINPODS MAXPODS
REPLICAS AGE
hpa-demo Deployment/hpa-demo 0%/50% 1 5 1
20h

kubectl -n hpa-ns get hpa hpa-demo -o yaml
apiVersion: autoscaling/v1
kind: HorizontalPodAutoscaler
metadata:
name: hpa-demo
namespace: hpa-ns
resourceVersion: "402402364"
selfLink: /apis/autoscaling/v1/namespaces/hpa-ns/
horizontalpodautoscalers/hpa-demo
uid: 6040eea9-0c2b-47de-9725-cfb78f17fe32
spec:

maxReplicas: 5
minReplicas: 1
scaleTargetRef:
apiVersion: apps/v1
kind: Deployment
name: hpa-demo
targetCPUUtilizationPercentage: 50
status:
currentCPUUtilizationPercentage: 0
currentReplicas: 1
desiredReplicas: 1
lastScaleTime: "2023-02-25T10:34:23Z"

Clean up the resources
kubectl delete ns hpa-ns --cascade
 namespace "hpa-ns" deleted
The parameter targetCPUUtilizationPercentage, which assesses
the average CPU utilization of the pods, is then the only option
available in this API version 1.
API version 2 of autoscaling features a modified syntax and the
addition of metrics in place of targetCPUUtilizationPercentage,
enabling a more versatile configuration of metrics.
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
name: php-apache
spec:
scaleTargetRef:
apiVersion: apps/v1
kind: Deployment
name: hpa-demo
minReplicas: 1
maxReplicas: 10
 metrics:
- type: Resource
resource:
name: cpu
target:
type: Utilization
averageUtilization: 50

The CPU utilization metric is a resource metric, since it is
represented as a percentage of a resource specified on pod
containers. Memory is the other resource metric that can be
provided.
By utilizing a target, you may also give resource metrics as
direct values rather than as percentages of the intended value
by using target.type of AverageValue instead of Utilization, and
setting the corresponding target. averageValue instead of target.
averageUtilization. Below is an example.
metrics:
- type: Resource
resource:
name: memory
target:
type: AverageValue
averageValue: 750Mi
Pod metrics are unique metrics. These metrics provide information
about Pods. To calculate the replica count, these metrics are
averaged over all Pods and compared to a target number. They
work similarly to resource metrics, with the exception that they
only support a target type of AverageValue. Advanced cluster
monitoring configuration is necessary for these cluster-specific
KPIs. Below is the sample snippet for pod metrics.

Citation: Pallavi Priya Patharlagadda (2023) Dynamic Scaling of Application using Kubernetes Horizontal Pod Auto Scaling. Journal of Engineering and Applied
Sciences Technology. SRC/JEAST-E107. DOI: doi.org/10.47363/JEAST/2023(5)E107

 Volume 5(2): 4-4J Eng App Sci Technol, 2023

Copyright:	©2023 Pallavi Priya Patharlagadda. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

type: Pods
pods:
metric:
name: packets-per-second
target:
type: AverageValue
averageValue: 50k

Instead of describing Pods, object metrics describe another object
within the same namespace. Value and AverageValue target types
are supported by object metrics. Value compares the target directly
to the statistic that the API returned. Before being compared to
the target, the value obtained from the custom metrics API using
AverageValue is divided by the number of Pods. Below is the
example for requests-per-second Object metric.
type: Object
object:
metric:
name: requests-per-second
describedObject:
apiVersion: networking.k8s.io/v1
kind: Ingress
name: main-route
target:
type: Value
value: 2k
The HorizontalPodAutoscaler will take into account each metric
individually if you supply more than one of these metric blocks.
For every metric, the HorizontalPodAutoscaler will compute
suggested replica counts; it will then select the metric with the
highest replica count. Below is the sample.
metrics:
- type: Resource
resource:
name: cpu
target:
type: Utilization
averageUtilization: 50
- type: Pods
pods:
metric:
name: packets-per-second
target:
type: AverageValue
averageValue: 1k

With the above configuration the HorizontalPodAutoscaler would
try to make sure each pod was serving 1000 packets per second
and using about 50% of the CPU that was requested.

Advantages of Horizontal Pod Auto Scaling:
One potent feature in Kubernetes that makes it possible to use
resources more effectively, particularly during moments of peak
consumption, is Horizontal Pod Autoscaling. By enabling the system
to automatically add or remove resources as needed, it removes the
need for human interaction and guarantees that your applications
can handle the demand. By doing this, you can prevent problems
like slowdowns and unavailability and guarantee that your apps
operate smoothly even when they are under heavy pressure.

Best Practices for Kubernetes HPA
• To leverage capabilities like as HPA, which are part of

Kubernetes, you must design the application with horizontal
scaling in mind. Adding native support for concurrent pod

execution through a microservice architecture is necessary
to accomplish this.

• Instead of connecting the HPA resource straight to a
ReplicaSet controller or Replication controller, use it on a
Deployment object.

• To enable version control over HPA resources, create them
using the declarative form. This method makes it easier to
monitor configuration changes over time.

• When utilizing HPA, be sure to provide the resource demands
for the pods. Requests for resources will allow HPA to scale
pods in the best possible way.

Limitations of Kubernetes HPA
• HPA and Vertical Pod Autoscaler based on CPU or Memory

measurements are incompatible. When HPA activates VPA, it
must employ one or more custom metrics to prevent scaling
conflicts with VPA, as VPA can only scale depending on CPU
and memory values. To use custom metrics, HPA needs a
custom metrics adaptor, which is available from each cloud
provider.

• Only stateless programs that allow for the simultaneous
operation of numerous instances can use HPA. HPA is also
applicable to stateful sets that depend on replica pods. HPA
does not apply to apps that cannot operate in numerous pods.

• Applications using HPA (and VPA) run the risk of experiencing
delays and disruptions because these algorithms do not
account for IOPS, networks, or storage.

• Finding waste in the Kubernetes cluster caused by the requested
resources at the container level that are reserved but not used
is still the administrators' responsibility after HPA. Kubernetes
does not handle the detection of inefficient container usage;
machine learning-powered third-party software is necessary.

Conclusion
Strong tools for controlling application scalability and resource
efficiency are provided by HPA, one of Kubernetes' autoscaling
capabilities. Your apps will stay responsive and economical under
different loads if you are aware of their methods, use cases, and
configuration. Remember to monitor and adjust settings to meet
your unique workload requirements and attain peak performance in
your Kubernetes environment as you implement these autoscaling
solutions. HPA reduces manual intervention and provides with
cost optimization [1-7].

References
1. https://kubernetes.io/docs/tasks/run-application/horizontal-

pod-autoscale/.
2. https://www.densify.com/kubernetes-autoscaling/kubernetes-

hpa/.
3. https://docs.avisi.cloud/blog/2023/03/20/auto-scaling-in-

kubernetes-part-1/.
4. https://www.dbi-services.com/blog/kubernetes-deployment-

autoscaling-using-memory-cpu/.
5. https://kubernetes.io/docs/concepts/cluster-administration/

cluster-autoscaling/.
6. https://bluexp.netapp.com/blog/cvo-blg-kubernetes-scaling-

the-comprehensive-guide-to-scaling-apps.
7. https://www.kubecost.com/kubernetes-autoscaling/

kubernetes-hpa/.

