
J Arti Inte & Cloud Comp, 2023 Volume 2(2): 1-6

Designing and Building Large-Scale Distributed Enterprise Applications
for Commerce

1Senior Software Engineer, Microsoft, WA, USA

2Software Engineer, CA

3American Express, U.S

Mahidhar Mullapudi1*, Satish Kathiriya2 and Rajath Karangara3

*Corresponding author
Mahidhar Mullapudi, Senior Software Engineer, Microsoft, WA, USA.

Received: June 06, 2023; Accepted: June 13, 2023; Published: June 20, 2023

ABSTRACT
Designing a large-scale enterprise application for e-commerce that can manage multiple millions of requests and manages multi-million dollars in revenue
has lot of complexities. The critical part of developing and maintaining such systems needs a thoughtful design that can be scalable, reliable and flexible
enough to handle changes as the product evolves over time. Many companies have developed their own architecture and systems for this use case; we
propose a system that’s designed and developed a few years ago which can handle millions of requests per day, rigorously tested with time on production
and served various use cases and scenarios.

There are several components and services in this system that must work seamlessly, and decisions must be made while designing a system. In this paper,
we discuss the overall architecture, components involved and important design decisions that affect their ease of use, flexibility, performance, scalability,
reliability and fault-tolerance. We also discuss other approaches that can be used while making design decisions.

We then illustrate how our decisions and systems satisfy the requirements that can be used for designing and developing these large-scale enterprise
applications for commerce stack.

Introduction
Commerce has transformed the global retail and online purchase
industry. In 2023, more than three billion people purchased
goods or services online across different platforms like Amazon,
Walmart, Microsoft (online services), Etsy, Shopify etc., Global
e-commerce retail sales surpassed $6.3 trillion in 2023, accounting
for 20.8% of all global retail sales – up from 7.4% in 2015. That
share increased to 22% in 2023 and projected to increase to 24%
by 2026 [1-4].

Given the impact and the scale of the problem, there are some
important qualities that play a critical role in designing large-scale
enterprise applications.

Ease-of-Use: how complex are the requirements for inputting
data into the system? What is the authoring and review process
for the input? Does the system need to maintain versions of data
for consistency and testing?

Flexibility: how often do the requirements change and how complex
are those changes? Are there a variety of types of services and
offerings in the system? Are there any services dependent on this
data generated by this system? Is this design language agnostic?

Performance: how much latency is, ok? Seconds? Or minutes?
How much throughput is required, per machine and in aggregate
for each of these services? [5]

Scalability: how scalable should the system be, would the traffic
increase two times every year or so? Can data be sharded and
re-sharded to process partitions of it in parallel? How easily can
the system adapt to changes in volume, both up and down? [1]

Reliability: does the system perform the function that the user
expected? Can it tolerate the load and data volume?

Fault-Tolerance: what kinds of failures are tolerated? What
semantics are guaranteed for the number of times that data is
processed or output? How does the system store and recover
in-memory state?

In this paper, we outline the overall architecture, overview of
the components involved, design of the system and try to adhere
to best practices and answer the above questions while making
design decisions.

For any commerce application, the product would be a common
point of transaction, needs distinct options or configurations in that

Review Article Open Access

Journal of Artificial Intelligence &
Cloud Computing

ISSN: 2754-6659

Citation: Mahidhar Mullapudi, Satish Kathiriya, Rajath Karangara (2023) Designing and Building Large-Scale Distributed Enterprise Applications for Commerce.
Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-241. DOI: doi.org/10.47363/JAICC/2023(2)223

J Arti Inte & Cloud Comp, 2023 Volume 2(2): 2-6

product, would need to maintain information about the prices per
region, language or localization, tax codes, financial instructions,
currency configuration based on the region that the service or
product is being bought, promotions etc., To be able to configure
these options, system needs a user interface that is simple enough
to interact with and flexible enough to be scaled across different
service families or product types. So, defining a schema for the
model and having all the behaviors and dimensions to the model
is of utmost importance. The data can change at any time and the
system should provide an effortless way to evaluate and isolate
revisions would be particularly important. The system should
have review and manual approval process with auditing, as there
is revenue impact for this data. Also, the system should easily
transform and ingest this data into different downstream systems,
so having a generic transformation and publishing pipeline which
can validate and save the state of the publishing data is essential. We
have discussed generic requirements for a commerce application
and designing that system on a global scale would be a complex
task. We present these requirements and design decisions in more
detail after we describe the components in our system. We then
reflect on lessons we learned over the last few years as we built
and rebuilt these systems. One lesson is to place emphasis on ease
of use: not just on the ease of writing applications, but also on
the ease of testing, debugging, deploying, and finally monitoring
hundreds of applications in production [6,7].

This paper is structured as follows. In Section 2, we provide an
overview of the architecture and components involved in the
system. In Section 3, we dive deep into some of the important
components in the system. Then in Section 4, we reflect on lessons
learned while designing and building large-scale distributed
commerce applications. Finally, we conclude in Section 5.

Systems Overview

There are multiple systems involved in designing and building
large scale enterprise applications for commerce. We present an
overview of architecture and various components involved in the
commerce eco-system.

Figure 1 illustrates the overall architecture of the system, individual
components, or services and how data is modeled, transported
across various components, and fed to dependent systems for
processing. Main components include data Inputs, Modelling,
Endpoints, Ingestion to downstream systems, and Business Layer
that abstracts away validation, data management, job orchestration,
diff and telemetry.

Data Intake
Intake form is a term that refers to how the data is captured to be
inserted or updated into the system. This form can be any type
of user interface – web application or just an excel with different
columns or a web service that provides this data in Json format
that can represent the intent for commerce. This data should be
in a normalized format that can be used by business planners and
other non-technical folks to convey the intent.

Modelling
Modelling is the core of the system that defines the schema to
capture intent from the input data, other configurations that are
required to maintain the products/services and transform this data
to a generic format that can be transferred to downstream services.
Here we discuss some key components that come under modelling.

Product
In the realm of commerce, a product is a fundamental entity that an
online business offers for sale. Let’s delve into some key aspects:

Product Types
Physical Products: These are tangible items that customers can
touch, feel, and use. Examples include clothing, electronics, books,
and household goods.

Digital Products: These are intangible goods delivered
electronically. Examples include e-books, software licenses, music
downloads, and online courses.

Services: Although products are not always considered, services
(such as consulting, web design, or subscription-based services)
are also part of the e-commerce landscape [8].

Some of the key properties in the product are:
Product Name: This can be defined as a localized string to
maintain the name of the product.

Product Description: Localized string

SKU (Stock Keeping Unit): Unique identifier that helps keep
track of inventory [9].

Region Configuration: Region Configuration includes data about
the list of regions this product is available in.

Currency Configuration: Currency conversions for different
market and regions.

Language Configuration: Language Configuration defines the
list of languages and region-specific conversions.

Pricing: The cost associated with purchasing the product, often
inclusive or exclusive of taxes and shipping fees.

Availability: It indicates whether the product is in stock, in
backorder, or out of stock.

Related Products: Recommendations for other products that are
related or complementary to the one being viewed.

Product Lifecycle: It maintains information about the product's
lifecycle, including state transitions: Test > GA > Preview > Live.

Citation: Mahidhar Mullapudi, Satish Kathiriya, Rajath Karangara (2023) Designing and Building Large-Scale Distributed Enterprise Applications for Commerce.
Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-241. DOI: doi.org/10.47363/JAICC/2023(2)223

J Arti Inte & Cloud Comp, 2023 Volume 2(2): 3-6

Financial Instructions: It gives information regarding the revenue
Skus, financial tax codes etc.,

The above properties can be included when defining the model
for product. This schema as you see is generic and normalized as
this allows simplicity and ease of use to interact with and develop
user interfaces. We will discuss how we can extend this model
and data flow between different components

Cooking/Augmentation: In the intuitive model, data is modeled
to reduce redundancy and express relationships that align to a
business view. The process of Augmentation is a process of de-
normalizing this data into a set of all unique permutations &
combinations [10,11].

Conversion: The process of taking the unique permutations created
by Augmentation and coercing them into a format understood by
a downstream system.

Model Reference: a unique permutation of data yielded by process
called Augmentation, which we will discuss later in this paper.

Dimension: An intrinsic property of a model reference. An option
in Product. It functions as a measurement, a standalone value.
Dimensions cause proliferation. There are several ways to go
about this, from adding the interface to a dimension type.

Data Component: information about a model reference which
does not cause proliferation and could be a standalone value or a
set of values. Commonly known as "dumb data".

Behavior Component: the interface which allows a class to
participate in the augmentation process by providing options
and/or data [10].

Behavior Component Descriptor: informs sorting logic for
augmentation process. Defines what behavior needs and provides
that. Behaviors are then sorted according to these requirements.

Composite Behavior: participants contribute to other behaviors
are composite behavior. In general, they do not have any logic
executed during augmentation by themselves but can express
conditions to process other behaviors.

Conditional behavior: A behavior which only applies under
certain conditions defined by criteria.

Runtime Behaviors: Generic (as in Generic Type) behaviors
which encapsulate common behavior patterns.

Criterion: The means by which participants in Augmentation are
allowed to be conditional.

Applicability Criterion: behavior can be made conditional. When
it is conditional, applicability criterion is defined and used as
the criteria to determine if behavior should be included in the
Augmentation process.

Item Criterion: item criterion, like applicability criterion, allows
behaviors to be conditional. This form of criterion is used for
composite behaviors. The difference is in the use case.

Applicability criterion says, “I am applicable in the following
situations” whereas Item criterion says, “The behaviors I contribute
are applicable in the following situations.”

Business Layer
Business Layer can include various components that take the
data model from user interfaces or data files or REST APIs from
different partner services, process and capture the intent in the
form defined in the schema and stored. We will discuss how this
data is managed and stored in the next sections.

Here we talk about components that are generic and schema
agnostic for most cases.

Layered Validation: validation framework which takes in the
list of validators and performs checks to ensure the consistency
and reliability of data at various stages in the transformation or
augmentation process starting from the data inputs to all the way
before landing at intermediate model.

Smart data diff: module that can smartly differentiate between
different versions of data based on outputs that these versions
generate and therefore allow users to identify the diffs of the
changes in inputs.

Data Branches: to maintain different versions of data, we choose
a concept of data branching which is like git branches and allows
for modularizing data and provides fine grained control over the
data that we are committing. This also allows us to maintain a
review/approval process before publishing the data that has huge
impact. We propose a concept of snapshotting and watermarks to
maintain copies of data using references and pointers rather than
maintaining entire copy [10].

Job orchestrator: to perform operations at scale while dealing with
large set of products and option permutations, we need to distribute
these cooking/augmentation processes across multiple nodes which
needs a scheduler or an orchestration process to distribute load,
allow the processes to run in isolation, maintain history or progress,
track the jobs to retrieve and segregate the results [5].

Localization Import/Export: localization is to capture and apply
different languages for some of the metadata about the product like
title, description, Sku names, search words and other properties
that need to be updated as per the area that is being sold in.

Cooking/Augmentation: process of Augmentation is de-
normalizing the input data into a set of all unique permutations
and combinations based on various configurations that are defined,
using the real-time data to generate an intermediate model that can
be stored or transformed to be ingested to different down streams.
We will dive deep on this in later sections [11].

Telemetry: ease of debugging is the utmost priority while
designing and building large-scale distributed systems so having
an advanced framework to read and write telemetry/logs plays

Citation: Mahidhar Mullapudi, Satish Kathiriya, Rajath Karangara (2023) Designing and Building Large-Scale Distributed Enterprise Applications for Commerce.
Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-241. DOI: doi.org/10.47363/JAICC/2023(2)223

J Arti Inte & Cloud Comp, 2023 Volume 2(2): 4-6

a crucial role. We will discuss different options in later sections.

Data Management and Storage
In this section we talk about how to store and manage data for
simplicity, reliability, consistency, and performance. The most
important thing is to abstract away any model and business intent
from the data management layer. So, we store the data as objects
in memory and we refer to them as entities.

Entities
Entities can be thought of as addresses, pointers, or the keys to
data. The entity object itself can be serialized, and then Base36
encoded to give a string-based address. This serialized entity as
a string key is commonly passed around in Urls and scripts and
de-serialized back to the entity object itself. An entity itself never
exists or doesn’t exist, in the same way you can’t say a pointer
exists or not in native languages.

Data Transfer Objects (DTOs)
DTOs serve as atomic units of data storage, serialized as a single
block of data. They are stored and retrieved using the entity as the
address in the underlying storage. Accessing DTOs is achieved
through properties on entities generated by the Entity Designer.
Entities may consist of zero or more DTOs, with DTO fields
exposed through designer-generated data access properties.
Entities lacking DTOs have only immutable key properties. The
primary DTO, which has ACLs, determines the existence of data,
and the Exists () method [12].

Direct Entities vs Isolation Context Entities
Entities are categorized as Direct (or System Entities) and Isolation
Context (or 'Regular' Entities). Direct Entities: Manage their
modification state independently. Changes made to properties can
be persisted using Save() or discarded with DiscardChanges() [13].

Isolation Context Entities
Modifications are held in an Isolation Context, lacking a direct
Save() or DiscardChanges() interface. Changes can be persisted
by calling CommitChanges() on the Isolation Context. Since
modifications are not in the entity reference itself, discarding
changes by reconstructing the entity reference will not work, and
changes are visible across references [13].

Data Provider

Data Providers in commerce system manage the loading and
saving of DTOs, offering per-DTO configuration. Sequential Data
Providers, commonly employed in commerce systems, consist of
an ordered list of providers, often including local cache, distributed
cache, and blob storage. Reads in Sequential Data Providers iterate

through each provider, returning the first result (typically from
local cache), updating previous providers if needed. Writes cascade
through providers until completion or encountering an error.

In a standard 3-provider setup, local cache optimizes fast access,
with distributed cache handling off-machine calls and triggering
local cache invalidation upon saves. For example, if machine A
writes to the distributed cache, machine B is notified to invalidate
its local cache, ensuring the next read on machine B fetches the
updated data from the distributed cache.

Endpoints Management
Once we have the de-normalized data after Augmentation
referred to as intermediate model, we can transfer the data to
different systems in a specific format that is compatible with
those downstream applications. We propose a custom solution to
abstract many internal details and business specific logic from the
endpoint management using the proposed design below

Environment: Environment maintains the list of endpoints that
the system needs to export/publish the data to and the owner for
this environment so that each separate business can have its own
environment configuration and publish data.

Publish Endpoint: The endpoint contains all the properties and
behaviors to transform and transmit data to downstream systems
and save the state of data to be ingested. Basic code template for
the Publish endpoint would look something like below
class IPublishEndpoint:
def PublishEntities(self, entities, catalog)
def ResetStateAsync(self)
def ValidateEntities(self, entities, catalog)
def IsPublishable(self, catalog)

Above is a basic template that can be used to build on to validate,
transform and publish the entities as well as maintain state of the
publish or ingestion.

Deep Dive
Model Transformation

Citation: Mahidhar Mullapudi, Satish Kathiriya, Rajath Karangara (2023) Designing and Building Large-Scale Distributed Enterprise Applications for Commerce.
Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-241. DOI: doi.org/10.47363/JAICC/2023(2)223

J Arti Inte & Cloud Comp, 2023 Volume 2(2): 5-6

Partner/Business Planner Model: This is persistent, and the
source of truth for partner intent and expressed as scenario-focused
intent fragments.

Core Model: This is also persistent and well-factored across all
scenarios. This is a well-defined normalized schema and will be
generic to serve various businesses and services. This core model
contains all required schema for building a commerce application.

Intermediate/Augmented Model: After applying the
configurations and processing various permutations, we arrive
at this model that can be processed and converted into various
formats supported by different applications. Also, this data can be
fed to Business Intelligence and Machine Learning pipelines to
extract valuable insights from trends and identify any anomalies
with payment information or tax codes.

Data Versioning/Branching

The above figure demonstrates the lifecycle of data branching/
versioning. This acts like source-control for the data changes in
the commerce system. Any changes to the data or modifications to
the entity are stored under the scope of a data branch. Maintaining
revisions of data is helpful for consistency, audit, and traceability.
Data branching and versioning can be achieved by creating
pointers/references to the data using a key and stored on the blob.
So, any modifications on the data are applied to a data branch
version and those changes are written to a specific version of the
reference in blob storage [9]. Once the changes and review process
are complete, the data gets committed to the main branch and is
published to the downstream systems.

Cooking/Augmentation
In the commerce system, data is stored efficiently to represent
business intent, avoiding duplication, and ensuring correctness.
Augmentation is a process where product configurations,
specifying choices and dependencies, generate all permutations
based on the options and dimensions.

For instance, a shirt may have configurations for color and size,
defining options and dependencies. Augmentation systematically
explores the configurations, allowing the creation of various
product instances [5-6].

Key Classes and Methods
Product: represents the entry point to Augmentation, storing
configurations.

Model Reference: built product with metadata.

Product Reference Builder: executes behaviors with satisfied
dependencies.

Behavior: defines dimension option groups, dependencies, and
provides data components.

Model Dimension Option Group: defines options for a property.

Dimension: an instance of an option.

Model Reference.Get All Permutations Parallel: performs
parallelized build and permutation steps.

High-level Steps of Augmentation
Discover all behaviors on the product.

Sort behaviors are based on the configuration and dependency
information.

Build: run behaviors with satisfied dependencies, providing option
groups.

Permutate: select options for groups without a selection, repeating
the process.

Detailed Steps of Augmentation
Create the initial reference, discovering and sorting behaviors and
create a builder, passing an empty product reference.

Use the builder to build a new product reference with behaviors.

Build: Run the Apply method of each behavior with satisfied
dependencies.

Dependency Graph: Enumerate products, create a dependency
graph, and sort behaviors.

Options for Add Requires: Define requirements for dependency
graph behavior placement.

Augmentation optimizes the representation of business data,
allowing scalable and flexible product configurations in the
commerce system.

Lessons Learned
While designing and building these large-scale distributed
applications there are different things that come into play
which become more complex than the actual business logic
implementation itself. Providing the same level of experience
for the customers at an exponential level of growth involves
thinking about the underlying infrastructure and horizontal scaling
of resources to serve the needs.

Citation: Mahidhar Mullapudi, Satish Kathiriya, Rajath Karangara (2023) Designing and Building Large-Scale Distributed Enterprise Applications for Commerce.
Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-241. DOI: doi.org/10.47363/JAICC/2023(2)223

J Arti Inte & Cloud Comp, 2023 Volume 2(2): 6-6

Copyright: ©2023 Mahidhar Mullapudi. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

Latency: The system should be able to scale horizontally to
maintain similar latency over the years for exponential growth in
data and complexity in business needs. So, designing the system
to be able to parallelize and run across multiple nodes and be able
to get consistent results will be important [1].

Ease of Debugging: In traditional applications, iterative
development is facilitated by storing data and rerunning queries
as needed. However, in this normalized stream processing system,
where data is maintained in different formats, iterating becomes
challenging, and updating operators may yield different results
on new data streams. So, maintaining different versions of data
and be able to use that to test the outputs that the transformation
pipeline generates helps a lot with debugging for any scenarios.

Ease of Deployment and Rollback: Ease of deployment
and rollback is crucial in distributed applications. The feature
development and serialization processes need to consider forward
and backward compatibility to be able to achieve frequent
deployments and rollbacks.

Ease of Monitoring and Operations: Monitoring and operation
of deployed apps are vital. We use alerts to detect processing lag,
ensuring timely adjustments. Creating dashboards and monitoring
key metrics to check the overall health and functionality of the
system.

Stream Processing vs Batch Processing: The choice between
streaming and batch processing is not binary. A hybrid approach
combines streaming and batch processing for optimal efficiency.
Streaming-only systems can provide authoritative results without
compromising accuracy and helps in dynamic scalability by better
utilization of resources with low latency [5].

Conclusion
In recent years, large-scale distributed commerce applications
with real-time processing have seen widespread adoption, with
the development of multiple independent yet composable systems.
These systems collectively form a versatile platform catering
to diverse needs. This paper explored various design decisions
and their impact on ease of use, performance, fault tolerance,
scalability, and correctness [1].

Firstly, a crucial design decision prioritized targeting seconds
of latency over milliseconds. This choice, deemed sufficient for
supported use cases, allows the utilization of persistent storage for
data transport. This transport mechanism facilitates fault tolerance,
scalability, and multiple correctness options in data processing
and conversions.

Secondly, emphasizing ease of use is paramount. Ensuring systems
have manageable learning curves that enable rapid development
and testing. Simplifying debugging, deployment, and operational
monitoring significantly boosts system adoption rates, a trend we
aim to enhance further.

Thirdly, recognizing a spectrum of correctness needs, our approach
offers choices along this spectrum. Application builders can opt
for ACID semantics if required, accepting additional latency
and hardware costs. However, for many use cases measuring
relative proportions or directional changes rather than absolute
values, faster and simpler applications are enabled. Also, this
paper introduced and deep dived into some advanced concepts
that can be utilized while building a distributed commerce system
and designed those components for greater flexibility.

References
1. Kleppmann M (2017) Designing Data-Intensive Applications.

O'Reilly Media https://www.oreilly.com/library/ view/
designing-data-intensive-applications/9781491903063/.

2. (2020) Commerce Best Businesses. Forbes https://www.
forbes.com/sites/quickerbettertech/2020/03/01/ these-are-
the-top-business-apps-for-2020and-other-smallbusiness-tech-
news/?sh=47a7730c41dc.

3. (2022) Forbes e-commerce transforming global trade. Forbes
https://www.forbes.com/sites/danikenson/2022/06/13/
thee-commerce-revolution-is-transforming-global-trade-
andbenefitting-the-us-economy/?sh=66e547fd22fa.

4. Marius K (2023) Largest e-commerce companies. Markinblog
https:// www.markinblog.com/largest-ecommerce-
companies/.

5. Janet LW, Shridhar I, Anshul J, Ran L, Guoqiang JC (2016)
Realtime Data Processing at Facebook. SIGMOD 1087-1098.

6. Low latency system design. Kayzen https://kayzen.io/blog/
largescale-low-latency-system-design.

7. Yang M (2022) Designing A High Concurrency, Low Latency
System Architecture. Medium https://medium.com/@
markyangjw/ designing-a-high-concurrency-low-latency-
systemarchitecture-part-1-f5f3a5f32e36.

8. Ajeet Khurana (2019) Defining the Different Types of
E-Commerce Businesses. Liveabout https://www.liveabout.
com/ ecommerce-businesses-understanding-types-1141595.

9. Allie Decker (2023) What Is a SKU? Shopify https://www.
shopify. com/retail/what-is-a-sku-number.

10. Commerce Business Model. Shopify https://www.shopify.
com/blog/ business-model.

11. Nick Handel (2021) Denormalization and Cooking: Metrics are
recipes to make your data useful Cooking data (normalization/
denormalization). Medium https://towardsdatascience.com/
denormalization-andcooking-metrics-are-recipes-to-make-
your-data-useful100a6933b47e.

12. DTO (Data Transfer Object). Baeldung https://www.
baeldung.com/ java-dto-pattern.

13. Transaction Isolation Levels. Microsoft https://learn.
microsoft.com/ en-us/sql/t-sql/language-elements/transaction-
isolationlevels?view=sql-server-ver16.

14. Anna Baluch (2023) Forbes e-commerce statistics. Forbes
https:// www.forbes.com/advisor/business/ecommerce-
statistics/. 15. What is a DTO? https://stackoverflow.com/
questions/1051182/ what-is-a-data-transfer-object-dto.

