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ABSTRACT
Designing a large-scale enterprise application for e-commerce that can manage multiple millions of requests and manages multi-million dollars in revenue 
has lot of complexities. The critical part of developing and maintaining such systems needs a thoughtful design that can be scalable, reliable and flexible 
enough to handle changes as the product evolves over time. Many companies have developed their own architecture and systems for this use case; we 
propose a system that’s designed and developed a few years ago which can handle millions of requests per day, rigorously tested with time on production 
and served various use cases and scenarios.

There are several components and services in this system that must work seamlessly, and decisions must be made while designing a system. In this paper, 
we discuss the overall architecture, components involved and important design decisions that affect their ease of use, flexibility, performance, scalability, 
reliability and fault-tolerance. We also discuss other approaches that can be used while making design decisions.

We then illustrate how our decisions and systems satisfy the requirements that can be used for designing and developing these large-scale enterprise 
applications for commerce stack.

Introduction
Commerce has transformed the global retail and online purchase 
industry. In 2023, more than three billion people purchased 
goods or services online across different platforms like Amazon, 
Walmart, Microsoft (online services), Etsy, Shopify etc., Global 
e-commerce retail sales surpassed $6.3 trillion in 2023, accounting 
for 20.8% of all global retail sales – up from 7.4% in 2015. That 
share increased to 22% in 2023 and projected to increase to 24% 
by 2026 [1-4].

Given the impact and the scale of the problem, there are some 
important qualities that play a critical role in designing large-scale 
enterprise applications.

Ease-of-Use: how complex are the requirements for inputting 
data into the system? What is the authoring and review process 
for the input? Does the system need to maintain versions of data 
for consistency and testing?

Flexibility: how often do the requirements change and how complex 
are those changes? Are there a variety of types of services and 
offerings in the system? Are there any services dependent on this 
data generated by this system? Is this design language agnostic?

Performance: how much latency is, ok? Seconds? Or minutes? 
How much throughput is required, per machine and in aggregate 
for each of these services? [5]

Scalability: how scalable should the system be, would the traffic 
increase two times every year or so? Can data be sharded and 
re-sharded to process partitions of it in parallel? How easily can 
the system adapt to changes in volume, both up and down? [1]

Reliability: does the system perform the function that the user 
expected? Can it tolerate the load and data volume?

Fault-Tolerance: what kinds of failures are tolerated? What 
semantics are guaranteed for the number of times that data is 
processed or output? How does the system store and recover 
in-memory state?

In this paper, we outline the overall architecture, overview of 
the components involved, design of the system and try to adhere 
to best practices and answer the above questions while making 
design decisions.

For any commerce application, the product would be a common 
point of transaction, needs distinct options or configurations in that 
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product, would need to maintain information about the prices per 
region, language or localization, tax codes, financial instructions, 
currency configuration based on the region that the service or 
product is being bought, promotions etc., To be able to configure 
these options, system needs a user interface that is simple enough 
to interact with and flexible enough to be scaled across different 
service families or product types. So, defining a schema for the 
model and having all the behaviors and dimensions to the model 
is of utmost importance. The data can change at any time and the 
system should provide an effortless way to evaluate and isolate 
revisions would be particularly important. The system should 
have review and manual approval process with auditing, as there 
is revenue impact for this data. Also, the system should easily 
transform and ingest this data into different downstream systems, 
so having a generic transformation and publishing pipeline which 
can validate and save the state of the publishing data is essential. We 
have discussed generic requirements for a commerce application 
and designing that system on a global scale would be a complex 
task. We present these requirements and design decisions in more 
detail after we describe the components in our system. We then 
reflect on lessons we learned over the last few years as we built 
and rebuilt these systems. One lesson is to place emphasis on ease 
of use: not just on the ease of writing applications, but also on 
the ease of testing, debugging, deploying, and finally monitoring 
hundreds of applications in production [6,7].

This paper is structured as follows. In Section 2, we provide an 
overview of the architecture and components involved in the 
system. In Section 3, we dive deep into some of the important 
components in the system. Then in Section 4, we reflect on lessons 
learned while designing and building large-scale distributed 
commerce applications. Finally, we conclude in Section 5.

Systems Overview

There are multiple systems involved in designing and building 
large scale enterprise applications for commerce. We present an 
overview of architecture and various components involved in the 
commerce eco-system.

Figure 1 illustrates the overall architecture of the system, individual 
components, or services and how data is modeled, transported 
across various components, and fed to dependent systems for 
processing. Main components include data Inputs, Modelling, 
Endpoints, Ingestion to downstream systems, and Business Layer 
that abstracts away validation, data management, job orchestration, 
diff and telemetry.

Data Intake
Intake form is a term that refers to how the data is captured to be 
inserted or updated into the system. This form can be any type 
of user interface – web application or just an excel with different 
columns or a web service that provides this data in Json format 
that can represent the intent for commerce. This data should be 
in a normalized format that can be used by business planners and 
other non-technical folks to convey the intent.

Modelling
Modelling is the core of the system that defines the schema to 
capture intent from the input data, other configurations that are 
required to maintain the products/services and transform this data 
to a generic format that can be transferred to downstream services. 
Here we discuss some key components that come under modelling.

Product
In the realm of commerce, a product is a fundamental entity that an 
online business offers for sale. Let’s delve into some key aspects:

Product Types
Physical Products: These are tangible items that customers can 
touch, feel, and use. Examples include clothing, electronics, books, 
and household goods.

Digital Products: These are intangible goods delivered 
electronically. Examples include e-books, software licenses, music 
downloads, and online courses.

Services: Although products are not always considered, services 
(such as consulting, web design, or subscription-based services) 
are also part of the e-commerce landscape [8].

Some of the key properties in the product are:
Product Name: This can be defined as a localized string to 
maintain the name of the product.

Product Description: Localized string

SKU (Stock Keeping Unit): Unique identifier that helps keep 
track of inventory [9].

Region Configuration: Region Configuration includes data about 
the list of regions this product is available in.

Currency Configuration: Currency conversions for different 
market and regions.

Language Configuration: Language Configuration defines the 
list of languages and region-specific conversions.

Pricing: The cost associated with purchasing the product, often 
inclusive or exclusive of taxes and shipping fees.

Availability: It indicates whether the product is in stock, in 
backorder, or out of stock.

Related Products: Recommendations for other products that are 
related or complementary to the one being viewed.

Product Lifecycle: It maintains information about the product's 
lifecycle, including state transitions: Test > GA > Preview > Live.
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Financial Instructions: It gives information regarding the revenue 
Skus, financial tax codes etc.,

The above properties can be included when defining the model 
for product. This schema as you see is generic and normalized as 
this allows simplicity and ease of use to interact with and develop 
user interfaces. We will discuss how we can extend this model 
and data flow between different components

Cooking/Augmentation: In the intuitive model, data is modeled 
to reduce redundancy and express relationships that align to a 
business view. The process of Augmentation is a process of de-
normalizing this data into a set of all unique permutations & 
combinations [10,11].

Conversion: The process of taking the unique permutations created 
by Augmentation and coercing them into a format understood by 
a downstream system.

Model Reference: a unique permutation of data yielded by process 
called Augmentation, which we will discuss later in this paper.

Dimension: An intrinsic property of a model reference. An option 
in Product. It functions as a measurement, a standalone value. 
Dimensions cause proliferation. There are several ways to go 
about this, from adding the interface to a dimension type.

Data Component: information about a model reference which 
does not cause proliferation and could be a standalone value or a 
set of values. Commonly known as "dumb data".

Behavior Component: the interface which allows a class to 
participate in the augmentation process by providing options 
and/or data [10].

Behavior Component Descriptor: informs sorting logic for 
augmentation process. Defines what behavior needs and provides 
that. Behaviors are then sorted according to these requirements.

Composite Behavior: participants contribute to other behaviors 
are composite behavior. In general, they do not have any logic 
executed during augmentation by themselves but can express 
conditions to process other behaviors.

Conditional behavior: A behavior which only applies under 
certain conditions defined by criteria.

Runtime Behaviors: Generic (as in Generic Type) behaviors 
which encapsulate common behavior patterns.

Criterion: The means by which participants in Augmentation are 
allowed to be conditional.

Applicability Criterion: behavior can be made conditional. When 
it is conditional, applicability criterion is defined and used as 
the criteria to determine if behavior should be included in the 
Augmentation process.

Item Criterion: item criterion, like applicability criterion, allows 
behaviors to be conditional. This form of criterion is used for 
composite behaviors. The difference is in the use case.

Applicability criterion says, “I am applicable in the following 
situations” whereas Item criterion says, “The behaviors I contribute 
are applicable in the following situations.”

Business Layer
Business Layer can include various components that take the 
data model from user interfaces or data files or REST APIs from 
different partner services, process and capture the intent in the 
form defined in the schema and stored. We will discuss how this 
data is managed and stored in the next sections.

Here we talk about components that are generic and schema 
agnostic for most cases.

Layered Validation: validation framework which takes in the 
list of validators and performs checks to ensure the consistency 
and reliability of data at various stages in the transformation or 
augmentation process starting from the data inputs to all the way 
before landing at intermediate model.

Smart data diff: module that can smartly differentiate between 
different versions of data based on outputs that these versions 
generate and therefore allow users to identify the diffs of the 
changes in inputs.

Data Branches: to maintain different versions of data, we choose 
a concept of data branching which is like git branches and allows 
for modularizing data and provides fine grained control over the 
data that we are committing. This also allows us to maintain a 
review/approval process before publishing the data that has huge 
impact. We propose a concept of snapshotting and watermarks to 
maintain copies of data using references and pointers rather than 
maintaining entire copy [10].

Job orchestrator: to perform operations at scale while dealing with 
large set of products and option permutations, we need to distribute 
these cooking/augmentation processes across multiple nodes which 
needs a scheduler or an orchestration process to distribute load, 
allow the processes to run in isolation, maintain history or progress, 
track the jobs to retrieve and segregate the results [5].

Localization Import/Export: localization is to capture and apply 
different languages for some of the metadata about the product like 
title, description, Sku names, search words and other properties 
that need to be updated as per the area that is being sold in.

Cooking/Augmentation: process of Augmentation is de-
normalizing the input data into a set of all unique permutations 
and combinations based on various configurations that are defined, 
using the real-time data to generate an intermediate model that can 
be stored or transformed to be ingested to different down streams. 
We will dive deep on this in later sections [11].

Telemetry: ease of debugging is the utmost priority while 
designing and building large-scale distributed systems so having 
an advanced framework to read and write telemetry/logs plays 
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a crucial role. We will discuss different options in later sections.

Data Management and Storage
In this section we talk about how to store and manage data for 
simplicity, reliability, consistency, and performance. The most 
important thing is to abstract away any model and business intent 
from the data management layer. So, we store the data as objects 
in memory and we refer to them as entities.

Entities
Entities can be thought of as addresses, pointers, or the keys to 
data. The entity object itself can be serialized, and then Base36 
encoded to give a string-based address. This serialized entity as 
a string key is commonly passed around in Urls and scripts and 
de-serialized back to the entity object itself. An entity itself never 
exists or doesn’t exist, in the same way you can’t say a pointer 
exists or not in native languages.

Data Transfer Objects (DTOs)
DTOs serve as atomic units of data storage, serialized as a single 
block of data. They are stored and retrieved using the entity as the 
address in the underlying storage. Accessing DTOs is achieved 
through properties on entities generated by the Entity Designer. 
Entities may consist of zero or more DTOs, with DTO fields 
exposed through designer-generated data access properties. 
Entities lacking DTOs have only immutable key properties. The 
primary DTO, which has ACLs, determines the existence of data, 
and the Exists () method [12].

Direct Entities vs Isolation Context Entities
Entities are categorized as Direct (or System Entities) and Isolation 
Context (or 'Regular' Entities). Direct Entities: Manage their 
modification state independently. Changes made to properties can 
be persisted using Save() or discarded with DiscardChanges() [13].

Isolation Context Entities
Modifications are held in an Isolation Context, lacking a direct 
Save() or DiscardChanges() interface. Changes can be persisted 
by calling CommitChanges() on the Isolation Context. Since 
modifications are not in the entity reference itself, discarding 
changes by reconstructing the entity reference will not work, and 
changes are visible across references [13].

Data Provider

Data Providers in commerce system manage the loading and 
saving of DTOs, offering per-DTO configuration. Sequential Data 
Providers, commonly employed in commerce systems, consist of 
an ordered list of providers, often including local cache, distributed 
cache, and blob storage. Reads in Sequential Data Providers iterate 

through each provider, returning the first result (typically from 
local cache), updating previous providers if needed. Writes cascade 
through providers until completion or encountering an error.

In a standard 3-provider setup, local cache optimizes fast access, 
with distributed cache handling off-machine calls and triggering 
local cache invalidation upon saves. For example, if machine A 
writes to the distributed cache, machine B is notified to invalidate 
its local cache, ensuring the next read on machine B fetches the 
updated data from the distributed cache.

Endpoints Management
Once we have the de-normalized data after Augmentation 
referred to as intermediate model, we can transfer the data to 
different systems in a specific format that is compatible with 
those downstream applications. We propose a custom solution to 
abstract many internal details and business specific logic from the 
endpoint management using the proposed design below

Environment: Environment maintains the list of endpoints that 
the system needs to export/publish the data to and the owner for 
this environment so that each separate business can have its own 
environment configuration and publish data.

Publish Endpoint: The endpoint contains all the properties and 
behaviors to transform and transmit data to downstream systems 
and save the state of data to be ingested. Basic code template for 
the Publish endpoint would look something like below
class IPublishEndpoint:
def PublishEntities(self, entities, catalog)
def ResetStateAsync(self)
def ValidateEntities(self, entities, catalog)
def IsPublishable(self, catalog)

Above is a basic template that can be used to build on to validate, 
transform and publish the entities as well as maintain state of the 
publish or ingestion.

Deep Dive
Model Transformation
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Partner/Business Planner Model: This is persistent, and the 
source of truth for partner intent and expressed as scenario-focused 
intent fragments.

Core Model: This is also persistent and well-factored across all 
scenarios. This is a well-defined normalized schema and will be 
generic to serve various businesses and services. This core model 
contains all required schema for building a commerce application.

Intermediate/Augmented Model: After applying the 
configurations and processing various permutations, we arrive 
at this model that can be processed and converted into various 
formats supported by different applications. Also, this data can be 
fed to Business Intelligence and Machine Learning pipelines to 
extract valuable insights from trends and identify any anomalies 
with payment information or tax codes.

Data Versioning/Branching

The above figure demonstrates the lifecycle of data branching/
versioning. This acts like source-control for the data changes in 
the commerce system. Any changes to the data or modifications to 
the entity are stored under the scope of a data branch. Maintaining 
revisions of data is helpful for consistency, audit, and traceability. 
Data branching and versioning can be achieved by creating 
pointers/references to the data using a key and stored on the blob. 
So, any modifications on the data are applied to a data branch 
version and those changes are written to a specific version of the 
reference in blob storage [9]. Once the changes and review process 
are complete, the data gets committed to the main branch and is 
published to the downstream systems.

Cooking/Augmentation
In the commerce system, data is stored efficiently to represent 
business intent, avoiding duplication, and ensuring correctness. 
Augmentation is a process where product configurations, 
specifying choices and dependencies, generate all permutations 
based on the options and dimensions.

For instance, a shirt may have configurations for color and size, 
defining options and dependencies. Augmentation systematically 
explores the configurations, allowing the creation of various 
product instances [5-6].

Key Classes and Methods
Product: represents the entry point to Augmentation, storing 
configurations.

Model Reference: built product with metadata.

Product Reference Builder: executes behaviors with satisfied 
dependencies.

Behavior: defines dimension option groups, dependencies, and 
provides data components.

Model Dimension Option Group: defines options for a property.

Dimension: an instance of an option.

Model Reference.Get All Permutations Parallel: performs 
parallelized build and permutation steps.

High-level Steps of Augmentation
Discover all behaviors on the product.

Sort behaviors are based on the configuration and dependency 
information.

Build: run behaviors with satisfied dependencies, providing option 
groups.

Permutate: select options for groups without a selection, repeating 
the process.

Detailed Steps of Augmentation
Create the initial reference, discovering and sorting behaviors and 
create a builder, passing an empty product reference.

Use the builder to build a new product reference with behaviors.

Build: Run the Apply method of each behavior with satisfied 
dependencies.

Dependency Graph: Enumerate products, create a dependency 
graph, and sort behaviors.

Options for Add Requires: Define requirements for dependency 
graph behavior placement.

Augmentation optimizes the representation of business data, 
allowing scalable and flexible product configurations in the 
commerce system.

Lessons Learned
While designing and building these large-scale distributed 
applications there are different things that come into play 
which become more complex than the actual business logic 
implementation itself. Providing the same level of experience 
for the customers at an exponential level of growth involves 
thinking about the underlying infrastructure and horizontal scaling 
of resources to serve the needs.
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Latency: The system should be able to scale horizontally to 
maintain similar latency over the years for exponential growth in 
data and complexity in business needs. So, designing the system 
to be able to parallelize and run across multiple nodes and be able 
to get consistent results will be important [1].

Ease of Debugging: In traditional applications, iterative 
development is facilitated by storing data and rerunning queries 
as needed. However, in this normalized stream processing system, 
where data is maintained in different formats, iterating becomes 
challenging, and updating operators may yield different results 
on new data streams. So, maintaining different versions of data 
and be able to use that to test the outputs that the transformation 
pipeline generates helps a lot with debugging for any scenarios.

Ease of Deployment and Rollback: Ease of deployment 
and rollback is crucial in distributed applications. The feature 
development and serialization processes need to consider forward 
and backward compatibility to be able to achieve frequent 
deployments and rollbacks.

Ease of Monitoring and Operations: Monitoring and operation 
of deployed apps are vital. We use alerts to detect processing lag, 
ensuring timely adjustments. Creating dashboards and monitoring 
key metrics to check the overall health and functionality of the 
system.

Stream Processing vs Batch Processing: The choice between 
streaming and batch processing is not binary. A hybrid approach 
combines streaming and batch processing for optimal efficiency. 
Streaming-only systems can provide authoritative results without 
compromising accuracy and helps in dynamic scalability by better 
utilization of resources with low latency [5].

Conclusion
In recent years, large-scale distributed commerce applications 
with real-time processing have seen widespread adoption, with 
the development of multiple independent yet composable systems. 
These systems collectively form a versatile platform catering 
to diverse needs. This paper explored various design decisions 
and their impact on ease of use, performance, fault tolerance, 
scalability, and correctness [1].

Firstly, a crucial design decision prioritized targeting seconds 
of latency over milliseconds. This choice, deemed sufficient for 
supported use cases, allows the utilization of persistent storage for 
data transport. This transport mechanism facilitates fault tolerance, 
scalability, and multiple correctness options in data processing 
and conversions.

Secondly, emphasizing ease of use is paramount. Ensuring systems 
have manageable learning curves that enable rapid development 
and testing. Simplifying debugging, deployment, and operational 
monitoring significantly boosts system adoption rates, a trend we 
aim to enhance further.

Thirdly, recognizing a spectrum of correctness needs, our approach 
offers choices along this spectrum. Application builders can opt 
for ACID semantics if required, accepting additional latency 
and hardware costs. However, for many use cases measuring 
relative proportions or directional changes rather than absolute 
values, faster and simpler applications are enabled. Also, this 
paper introduced and deep dived into some advanced concepts 
that can be utilized while building a distributed commerce system 
and designed those components for greater flexibility.
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