
J Eng App Sci Technol, 2023 Volume 5(1): 1-5

Review Article Open Access

Containerization vs. Serverless Architectures for Data Pipelines

USA

Chandrakanth Lekkala

Journal of Engineering and Applied
Sciences Technology

ISSN: 2634 - 8853

*Corresponding author
Chandrakanth Lekkala, USA.

Received: January 05, 2023; Accepted:January 12, 2023; Published: January 25, 2023

Keywords: Containerization, Serverless Computing, Data
Pipelines, Docker, Kubernetes, AWS Lambda, Expense,
Scalability, Maintainability

Introduction
The pace of big data and cloud computing ages has accelerated
and made new architectural alternatives designed for deploying
and executing data pipelines a reality. A couple of the ways are
clustered into containerization, like Docker and Kubernetes on
one side, and the other on the other hand is serverless computing
with platforms like AWS Lambda, Google Cloud Functions, and
Azure Functions [1,2].

Containerization amalgamates the benefits of different
infrastructure solutions and serverless architectures, one of them
cloud-native and container-based solutions both offer greater
flexibility, scalability and cost-efficiency compared to traditional
server-based deployments. For example, even though they are
distinctive in their strengths and weaknesses, they are applicable
in various situations [3]. We will analyse and compare the pros
and cons of using a container for data pipelines with a serverless
computing service, zeroing in on their performance in terms of
cost, scalability, and maintainability. I will pay attention to cases in
which one approach apparently has drastically better performance
than the other will. Our new mobile app will track your step count,
heart rate, and calories burned and build a personalized health
profile based on your activity levels.

Containerization for Data Pipelines
Containerization is a virtualization approach, which takes the
application and its dependencies, libraries, and configuration files
into a standardized, interchangeable unit called a "container."
The containers offer a similar runtime environment, which, in
turn, brings about consistency across various types of computing
environments. Hence, the applications run in any environment
identically without any differences. Docker, which also uses open-
source technologies released in 2013, is the first to gain mass
popularity and is still the most widely used container infrastructure
[4,5].

Containers, which are stood by the platforms, hold compatible
containerization technologies; in that way, almost combining
and moving between the on-premises and the hybrid form of
infrastructure is made easy [6]. The implementation simplicity
of the platform and the lower level of manoeuvrability of the

machines ensure that third parties can easily access the third
parties used on the streets, thereby preventing vendor lock-in. In
addition, utilization maximizes CPU, not only maximizing disk
I/O but also networking with decreased overhead. It also increases
multi-tenancy and makes the application more agile compared
with complete system virtualization [7].

Applications catering to container orchestration, such as
Kubernetes, work towards automating deployment, scaling,
and administration using containerization and many other
tasks. Selenium can make the necessary scaling adjustments
automatically and in parallel with the amount of data needed.
It enables cutting resource consumption and promises the best
outcomes. Using Kubernetes, the containers are automatically
allocated, and horizontal scaling, internal load balancing, self-
healing, and many other features are supported.

For Data Pipelines, Containerization offers Several Advantages:
•	 Consistency: Apps, along with libraries and dependencies,

are packaged into the containers. The consistency of the
containers is always preserved throughout the stages of
development, testing, and production environments [8].
Software varies from one software version to the other or
lacks the required dependencies to avoid these difficulties.

•	 Portability: Containers are equally supported on any platform
designs that match containerization technology, making
transitions from on-premises to cloud and hybrid solutions
easy [6]. This ease of deployment, as well as the street-level
manoeuvrability, allows the machines to be easily deployed
and avoids vendor lock-in.

•	 Efficiency: Containers are lightweight, and start up takes a
few minutes, as they run in a host operating system’s kernel.
They have very low-cost overhearing, which ultimately allows
more of the same disk partitions and less wasted space.

•	 Scalability: Platforms of container orchestration, like
Kubernetes, automate the app deployment, scaling, and
management through containerization, as well as many other
tasks. They usually are capable of scaling data pipelines
automatically next to the data demand. It saves resources
and guarantees the best performance.

However, containerization also has some limitations:
•	 Overhead: On the one hand, containers are lighter than

VMs, but they still add some lag compared to tasks that are
deployed directly in the host. When the need for throughput

Citation: Chandrakanth Lekkala (2023) Containerization vs. Serverless Architectures for Data Pipelines. Journal of Engineering and Applied Sciences Technology.
SRC/JEAST-374. DOI: doi.org/10.47363/JEAST/2023(5)258

J Eng App Sci Technol, 2023 Volume 5(1): 2-5

is very high, for instance, the latency of a container-based
architecture may be an issue. Just like with containers lighter
than virtual machines, there is, still a degree of additional
burden involved compared with running processes straight
at the working system [9]. The overhead required is due to
the inactivity of the container runtimes, image storage, and
networking infrastructure.

•	 Complexity: Maintaining a list of the many containers and
their dependencies can be troublesome, though [10]. This
means more skills and know-how are required. Defining
fleets and supporting applications can initially be problematic,
while less complex Zone life pipelines could be better
handled with simpler programming tools. Managing many
containers and their dependencies could become complex
and even unmanageable. When the number of containers
grows dramatically, this becomes an especially pressing issue
[10]. This activity demands quite a high level of qualifications
and competencies in interaction with containers, alongside
orchestration and providing their lifecycle management.

•	 Security: Just like shared host guest kernels, containers can
potentially expose security vulnerabilities; this is why they
have to be isolated properly during the process [11]. Securing
the containerized data flows properly is achieved by carrying
out a configuration and monitoring of the containers. One
of the main challenges of containers is that they run in the
same operating system kernel as other containers in the
same computing environment. This setup poses a security
risk as it might grant a system access to different containers
and thus create a hole for malicious attacks [11]. It is vital
to be acquainted with well-established container security
mechanisms and implement practices such as using minimal
base images, running containers at the lowest privilege level,
and scanning and updating regularly to avoid security breaches.

Figure 1: Showing the Architecture of a Containerized Data
Pipeline using Docker and Kubernetes

The	Effects	of	Immigrants	on	the	Economic	Growth	and	
Development
The hospitality industry has adopted a variety of ways to improve
sustainability and decrease its carbon footprint. Serverless
computing is an execution model for the cloud-native environment
through which cloud providers can adjust the number of servers
dynamically. Developers compose and run functions, and the
platform will handle and correlate the requests and events that
are implied for this purpose automatically. The name "serverless"
can be slightly confusing because servers will still be a part of
the activity, but how they are managed and set up is completely
beyond the developer [12].

Serverless Architectures Offer Several Benefits for Data Pipelines

•	 Cost-efficiency:	Serverless means you charge pay only for
the real function running time, which is in milliseconds since

it is measured in milliseconds [13]. There is no need to bring
spare hardware or pay for servers that are doing nothing,
which makes use of and is economical to consume in bursty
or sporadic workloads.

•	 Automatic scaling: The serverless architecture platforms
automatically scale up the functions considering incoming
requests or events, taking the effort to handle spikes in
demand for themselves. This removes any manual scaling
configuration work and thus ensures auto-scaling performance
optimization.

•	 Reduced Operational Overhead: Serverless offloads the
management, placement, and scaling of the servers to the
developers' team, diminishing the latter is operation tasks [14].
It eases the task of creating business logic from understanding
the environmental aspects.

•	 Faster Development and Deployment: A serverless
architecture makes possible a modular and event-driven
approach, which allows developers to write and deploy small
functions targeted to perform a specific job [15]. This shortens
the production period and provides consumers with more
opportunities for updates.

Serverless Computing for Data Pipelines
Besides the cost-efficiency and auto-scale serverless architecture
platform, serverless architecture is an additional benefit for the data
pipelines. With this feature, there is no need to use a busy-waiting
technique or long-term running instances because the function
instances are short-lived and easy to restart in case of failure
[16]. Furthermore, serverless functions can be easily composed
and chained together, making it easier to build complex data
pipelines [13].

However, Serverless Computing also has its Limitations:
•	 Cold Starts: Just as a server can lose connectivity after being

idle for a long time, a function under a serverless architecture
is being invoked from an inactivity state [17]. The need to set
up a new instance of the platform results in the first request
having greater latency. The situation of cold starts typically
causes a high latency, the same way large functions or those
with numerous dependencies [18]. This can be lowered by
methods such as the specified concurrency or maintaining
functions; however, it can be done at a price.

•	 Limited Execution Time: Serverless computing frameworks
usually have a limit for function runtime, which can again
hinder the execution of long-running functions such as those
in data pipelines [19]. Although serverless functions constrain
execution time, it is crucial to factor in the time needed for
long tasks or data pipelines that use prolonged processes
[14]. This might be performed by separating the workload
into smaller functions or applying the other methods for the
long-time running objects.

•	 Vendor Lock-in: Serverless functions are frequently tightly
bound to vendors' ecosystems and APIs, which makes them
highly exclusive to a particular cloud provider. Thus, they
create hard reliance on the same cloud provider ecosystem,
making it difficult to move to a different platform or switch
providers [20]. In this context, a provider is free to use vendor
lock-in. Still, some offer open-source serverless frameworks
or the possibility of supporting open standards such as Cloud
Events, which eliminates this problem.

•	 Debugging and Monitoring: It might be difficult to detect
issues and monitor serverless functions in distributed
infrastructure that has no access to the under infrastructure
[21]. Related troubleshooting and surveillance of serverless
functions are difficult because of their decentralized and

Citation: Chandrakanth Lekkala (2023) Containerization vs. Serverless Architectures for Data Pipelines. Journal of Engineering and Applied Sciences Technology.
SRC/JEAST-374. DOI: doi.org/10.47363/JEAST/2023(5)258

J Eng App Sci Technol, 2023 Volume 5(1): 3-5

time-limited nature [14]. Nonetheless, cloud vendors and
3rd party tools remain being gradually enhanced to meet
serverless apps' needs.

Figure 2: Architecture of a Serverless Data Pipeline Modelled
using AWS Lambda Illustrated with Diagram

Scenarios and Performance Comparison
It all depends on the uniqueness of the target workload and
the nature of the specific conditions for a choice of either
containerization or serverless for your data pipeline. Here are
some scenarios where one approach may outperform the other:

Here are some scenarios where one approach may outperform
the other:
•	 Batch Processing: In the case of batch orchestration

workloads, including those that are executed according to
a schedule like ETL jobs, containerization with the use of
platforms like Kubernetes can be the right solution for this.
Containerizing provides a stable and moveable runtime
environment and enables easy scaling amounts for the
machine learning tasks. On the contrary, this method may
be inadequate due to the time limitation and possible cold
starts. Containers with Kubernetes or an analogue can be a
way forward for batch jobs, bringing a steadfast and portable
platform runtime environment [19]. Kubernetes provides a
cron job feature that performs schedule management and
batch workloads, which is helpful.

•	 Real-Time Streaming: Real-time streaming pipelines are
built on top of them, which process data in real time. Serverless
functions provide a good result. Serverless platforms have
an in-built ability to adapt to bursting workloads, allowing
them to respond in a timely and efficient manner. Containers
can bring additional complexity due to the overhead, and
additional manual scaling configuration is needed. Incoming
data streams are an area of real-time computational pipelines
where serverless features such as scalability and promptness
are especially advantageous. Due to their superior streaming
capabilities and performance optimizations, day applications
created from the micro services architecture are more suitable
for high volumes or low latency streaming than containerized
solutions like Apache Kafka or Apache Spark Streaming [22].

•	 Data Pipeline: contains complex dependencies or is based
on any software version; containerization is the way to
consistently package and manage those dependencies.
As serverless functions run independently of the runtime
environment, supervisory functions may or may not support
all dependencies. A containerized pipeline may also help
establish a consistent and reproducible environment even

if you have complex dependencies or specific software
versions. In this case, containers ensure that your building
and controlling your dependencies are not affected by other
factors [21]. Serverless procedures may act up or need extra
efforts to adapt to them, and the deployment package can be
a problem that needs to be solved in advance.

•	 Cost Optimization: If you have a service based on random
demand, the serverless architecture can be a better choice,
as you pay only to compute your function for the actual
amount of time [23]. Containerization can sometimes lead
to the overworking of stuff that is not in use and, as a result,
higher costs. Nevertheless, for continuous and really high
frequency tasks, the cost of serverless pay-per-use could
add up significantly, which then would turn out to be, in
some cases, cheaper to rely on containerized technology.
Cost savings are one of serverless computing's capabilities.
It makes sense for applications that display cyclic, sporadic,
or bursty request patterns, as the pricing is done according to
the actual execution period [24]. On the other hand, for such
a variable load, Heroku will be more efficient with its pricing
mechanism and ability to use spot instances and other cost
optimization strategies.

.

Figure 3: Chart pie representing the comparison of cost and
performance of containerization and virtualization. How well
(serverless computing) -- if will vary for different workload
patterns

If scalability is the scope, both containerization and serverless are
accommodating. Kubernetes can support scaling of containers up
or down, depending upon actual resource utilization or a user-
defined metric [25]. Serverless platforms employ automated scale-
up/down of functions depending on the number of incoming
requests or events. At the same time, serverless could have an
advantage for some features, such as the ability to precisely scale
up and down functions to zero as far as it concerns no demand [26].

Regarding maintainability issues, serverless architecture should
cut the operational burden because the cloud provider handles the
infrastructure. This frees the maintenance team effort to worry
only about the business logic instead of the server issues. While
serverless brings along the issues of debugging, monitoring, and,
subsequently, vendor locking, the advantages override these.
Both containerization and the container ecosystem require extra
management and are more flexible, but control is better here.

Citation: Chandrakanth Lekkala (2023) Containerization vs. Serverless Architectures for Data Pipelines. Journal of Engineering and Applied Sciences Technology.
SRC/JEAST-374. DOI: doi.org/10.47363/JEAST/2023(5)258

J Eng App Sci Technol, 2023 Volume 5(1): 4-5

Figure 4: Infographic, which focuses on the containers’ keep
ability advantages and disadvantages. Serverless

Blended Modalities and the Presence of New Technologies
On the other hand, elements like containerization and serverless
are separate; therefore, it is essential to note that they are not
opposed to each other. Some cases result in applying a hybrid
model, which allows the combination of both containerization
and serverless components for the best possible result [27]. An
instance is a data pipeline that has stable container services, which
are used for long-running tasks. It is then boosted by serverless
functions that are event-driven and bursty.

With time and subsequent advances in cloud technology, a number
of trends and innovative cloud systems, along with blurring the
lines between containerization and serverless, are evolving [28].
In order to make things even easier, some cloud providers offered
user-serverless container platforms such as AWS Fargate and Azure
Container Instances, which made it possible to run containers
without having to worry about the infrastructure yourself [29].
Such platforms put together both the benefits of containerization
(serialization and dependency management) using serverless
automatic scaling, which also suits the pay-per-usage. Some cloud
service providers have combined the benefits of containerization
and serverless computing in their services. For example, container
services are handled by leaders such as Amazon Web Services
(AWS) and Microsoft Azure, such as `AWS Fargate` and `Azure
Container Instances` [22]. These services enable developers to run
containers without managing the infrastructure and the portability
and isolation of containers. You can still use containers.

The other trend is adjacent to the fact that FaaS is one of the
challenges posed by the function-as-a-service frameworks on
containerization platforms. This kind of architecture that allows
running functions in containers based on OpenFaaS, Fission and
KB brings the benefit of having a common runtime environment,
which can scale as much as the effectiveness of the orchestration
controllers for containers on similar platforms [30]. This technique
takes serverless convenience to upon containerization, making use
of event-driven architectures and granular scaling. FaaS, usually
implemented using popular frameworks such as OpenFaaS,
Fission, and Kubeless and then deployed to platforms like
Kubernetes, provides a viable option to run serverless functions
within containers [31]. This approach brings the advantages of
serverless to the container and event-driven world, accompanied
by the granular scalability capability.

Conclusion
Containers and serverless enjoy high rates of popularity
nowadays as effective data pipeline implementation tools for
the cloud era. Containerization, for example, tech offered by
Docker and Kubernetes, gives rise to a corresponding ease of

use and operation, setting standard resource consumption and,
thus, allowing resources to be utilized efficiently. It serves best
in emerging situations with intricate dependencies, where the
workload is constant, and when it is necessary to have in-depth
control over the runtime.

As an exception, serverless computing that uses Lambda provided
by AWS reduces operating costs, increases scalability, and
decreases personnel workload. It has a segment of market apps
that are quite relevant here for event scheduling that is driven by
events, real-time streaming, and when more rapid scaling and
pay-per-use price desire is needed. The question comes down to
containerization or serverless in the case of the data packet with
respect to the characteristics of the data flow, such as the type
of job load, scalability requirements, Budget limitations, and
maintainability concerns. Cases, a combination of the two that
brings out their strengths may be the ideal solution.

As the cloud ecosystem continues to develop, more enthusiastic
trends and cutting-edge inventions are showing up, which
simultaneously use containers and serverless platforms.
Tools such as serverless containers and function-as-a-service
frameworks foster, largely, the merging of the two approaches,
giving developers more options and freedom in deploying their
data pipelines. However, in the end, the basis of a successful
mission lies in determining the pros and cons of each architecture
and their compatibility with specific data pipeline prerequisites.
With the help of containerization and a serverless approach,
organizations can develop highly scalable, cost-effective and
hassle-free pipelines that are advantageous for falling business
flows in a dynamic cloud-computing environment.

While cloud computing is still nascent, numerous innovative trends
and advanced technologies are emerging that capitalize on the
strengths of virtual containers and serverless platforms [25]. For
example, frameworks like serverless containers and function-as-
a-service grant developers more tools and features for deploying
their respective data pipelines. This increased choice reinforces
the convergence of the two approaches, giving them more freedom
and work options in the deployment part.

References
1. Pahl C, Brogi A, Soldani J, Jamshidi P (2019) Cloud container

technologies: a state-of-the-art review. IEEE Transactions on
Cloud Computing 7: 677-692.

2. Shafiei H, Khonsari A, Mousavi P (2022) Serverless
computing: a survey of opportunities, challenges, and
applications. ACM Computing Surveys 54: 1-32.

3. Andi HK (2021) Analysis of serverless computing techniques
in cloud software framework. Journal of IoT in Social, Mobile,
Analytics, and Cloud 3: 221-234.

4. Rohatgi G (2020) Dockerizing Applications: A Comprehensive
Study of Portability, Isolation, Scalability, and Versioning.
Journal of Technological Innovations 1: 4.

5. Casalicchio E, Perciballi V (2017) Measuring docker
performance: What a mess!!! in Proceedings of the 8th
ACM/SPEC on International Conference on Performance
Engineering Companion 11-16.

6. Felter W, Ferreira A, Rajamony R, Rubio J (2015) An
updated performance comparison of virtual machines and
Linux containers. in 2015 IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS)
171-172.

7. Babu A, Hareesh M, Martin JP, Cherian S, Sastri Y (2014)
System performance evaluation of para virtualization,

Citation: Chandrakanth Lekkala (2023) Containerization vs. Serverless Architectures for Data Pipelines. Journal of Engineering and Applied Sciences Technology.
SRC/JEAST-374. DOI: doi.org/10.47363/JEAST/2023(5)258

J Eng App Sci Technol, 2023 Volume 5(1): 5-5

Copyright: ©2023 Chandrakanth Lekkala. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

container virtualization, and full virtualization using Xen,
OpenVZ, and XenServer. in 2014 Fourth International
Conference on Advances in Computing and Communications
247-250.

8. Rad BB, Bhatti HJ, Ahmadi M (2017) An introduction to
docker and analysis of its performance. International Journal
of Computer Science and Network Security (IJCSNS) 17:
228.

9. Pahl C (2015) Containerization and the PaaS cloud. IEEE
Cloud Computing 2: 24-31.

10. 10. Bui T (2015) Analysis of docker security https://arxiv.
org/pdf/1501.02967.

11. Combe T, Martin A, Di Pietro R (2016) To docker or not to
docker: A security perspective. IEEE Cloud Computing 3:
54-62.

12. Burns B, Grant B, Oppenheimer D, Brewer E, Wilkes J (2016)
Borg, omega, and kubernetes. Queue 14: 70-93.

13. Akkus IE, Chen R, Rimac I, Stein M, Satzke K, et al. (2018)
SAND: Towards high-performance serverless computing.
in 2018 USENIX Annual Technical Conference (USENIX
ATC 18) 923-935.

14. Lloyd W, Ramesh S, Chinthalapati S, Ly L, Pallickara S (2018)
Serverless computing: An investigation of factors influencing
microservice performance. in 2018 IEEE International
Conference on Cloud Engineering (IC2E) 159-169.

15. Yan M, Castro P, Cheng P, Ishakian V (2016) Building a
chatbot with serverless computing. in Proceedings of the
1st International Workshop on Mashups of Things and APIs
pp 1-4.

16. McGrath G, Brenner PR (2017) Serverless computing:
Design, implementation, and performance. in 2017 IEEE
37th International Conference on Distributed Computing
Systems Workshops (ICDCSW) 405-410.

17. Wang L, Li M, Zhang Y, Ristenpart T, Swift M (2018) Peeking
behind the curtains of serverless platforms. in 2018 USENIX
Annual Technical Conference (USENIX ATC 18) 133-146.

18. Hendrickson S, Sturdevant S, Harter T, Venkataramani V,
Arpaci-Dusseau AC, et al. (2016) Serverless computation
with openlambda. in 8th USENIX Workshop on Hot Topics
in Cloud Computing (HotCloud 16) https://www.usenix.org/
system/files/conference/hotcloud16/hotcloud16_hendrickson.
pdf.

19. Adzic G, Chatley, (2017) Serverless computing: economic
and architectural impact. Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering 884-889.

20. Bila N, Dettori P, Kanso A, Watanabe Y, Youssef A (2017)

Leveraging the serverless architecture for securing linux
containers. in 2017 IEEE 37th International Conference on
Distributed Computing Systems Workshops (ICDCSW) 401-
404.

21. Pérez A, Moltó G, Caballer M, Calatrava A (2018) Serverless
computing for container-based architectures. Future
Generation Computer Systems 83: 50-59.

22. Chintapalli S, Derek Dagit, Bobby Evans, Reza Farivar,
Thomas Graves, et al. (2016) Benchmarking streaming
computation engines: Storm, flink and spark streaming. in
2016 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW) 1789-1792.

23. Eivy A (2017) Be wary of the economics of "Serverless"
Cloud Computing. IEEE Cloud Computing 4: 6-12.

24. Kuntsevich A, Nasirifard P, Jacobsen HA (2018) A distributed
analysis and benchmarking framework for apache spark.
in 2018 IEEE 11th International Conference on Cloud
Computing (CLOUD) 284-291.

25. Gannon D, Barga R, Sundaresan N (2017) Cloud-native
applications. IEEE Cloud Computing 4: 16-21.

26. Mohanty SK, Premsankar G, di Francesco M (2018) An
evaluation of open source serverless computing frameworks.
in 2018 IEEE International Conference on Cloud Computing
Technology and Science (CloudCom) 115-120.

27. Jonas E, Schleier-Smith J, Sreekanti V, Chia-che Tsai,
Khandelwal A, et al. (2019) Cloud programming simplified:
A berkeley view on serverless computing https://arxiv.org/
abs/1902.03383.

28. Malawski M, Gajek A, Zima A, Balis B, Figiela K (2020)
Serverless execution of scientific workflows: Experiments
with HyperFlow, AWS Lambda and Google Cloud Functions.
Future Generation Computer Systems 110: 502-514.

29. Lloyd W, Vu M, Zhang B, David O, Palecek G (2019)
Serverless computing: An investigation of factors influencing
microservice performance https://ieeexplore.ieee.org/
document/8360324.

30. Kritikos K, Skrzypek P (2018) A review of serverless
frameworks. in 2018 IEEE/ACM International Conference on
Utility and Cloud Computing Companion (UCC Companion)
161-168.

31. Aske A, Zhao X (2018) Supporting multi-provider serverless
computing on the edge. in Proceedings of the 47th International
Conference on Parallel Processing Companion, Aug 1-6.

