
J Arti Inte & Cloud Comp, 2024 Volume 3(1): 1-11

Research Article Open Access

Comparison of Software Development Solution Implementations
in Lightning Flow Builder and Apex Programming Language in
Salesforce Technology

Department of Computer Science, Lublin University of Technology, Nadbystrzycka 36B, 20-618 Lublin, Poland

M Grabowski* and M Plechawska-Wójcik

Journal of Artificial Intelligence &
Cloud Computing

*Corresponding author
M Grabowski, Department of Computer Science, Lublin University of Technology, Nadbystrzycka 36B, 20-618 Lublin, Poland.

Received: January 09, 2024; Accepted: January 11, 2024; Published: January 23, 2024

Introduction
By the term of Salesforce, it is usually meant the software,
technology or platform designed by the company of the same name.
Since it was established, Salesforce has insisted on overtaking the
marketplace of the type of software named SaaS (Software as a
service). SaaS means that the customer gets the desired applications
which are kept on one of service provider’s servers. The customer,
therefore, uses the computing power and disk storage on demand
which belongs to the service provider [1, 2].

For the last two dozens years, several main applications to
handle customer relationships on the Salesforce platform has
been launched: Sales Cloud, Service Cloud, Marketing Cloud,
Experience Cloud. These applications are the part of the CRM
(Client Relationship Management) built on the basis of the
Salesforce cloud-based platform [3]. CRM is a strategy or a
philosophy for entrepreneurs to improve sales processes, quality
of service and marketing actions, and any other client-related
actions in order to focus on clients’ needs. The CRM systems and
tools exemplified by the Salesforce platform focus on improving
the way enterprises work to make customers more satisfied and
improve the efficiency of business processes.

The former study compared the time the developer needs to
implement solutions using Apex programming language and Flow

Builder, a no-code tool. It was agreed that the whole two parts
of the study should compare the implementation and execution
times of the sample solution. Implementation time means the time
programmers spent on a successful implementation of the solution
using two tools: Apex programming language and Flow Builder.
Execution time means the time the Salesforce platform needs to
run the solution without an error-so it is the time between the start
and the end of script execution at the back-end side. This research
analyzed two types of applications to be deployed by developers:
simple and more complex.

The latter study aimed at comparing the execution times of the
sample applications (possibly most optimized) that were made
both in Apex and Flow Builder. The comparison of the execution
times was essential to establish which tool of those two is faster
and more efficient in use.

Flow Builder itself is a relatively new tool. It was introduced as
a part of the Spring ’19 release and that update has replaced the
older tool, Flow Designer. Released in 2012, Flow Designer was
completely Flash dependent, so Salesforce has decided to launch
a new solution. The Salesforce platform is not widely described
in the scientific community and there are few researches that
are concerned with this technology. This study is to share the
innovatory findings on the differences between programmatic

ISSN: 2754-6659

ABSTRACT
The recent rapid development of the Salesforce platform has induced an expansion of no-code solutions to make automation available for less technical
audience. This study examines similarities and differences between Apex programming and one of the no-code solutions on the Salesforce platform, Flow
Builder. The research compares the implementation of the same applications using Apex language and Flow Builder in terms of operating time to fulfil
requirements (first part) and execution time of both applications (second part).

The applications were classified into two categories regarding the complexity of the solution, namely simple and intermediate, so that the research could
thoroughly verify the impact of the amount of code and the simplification of programming concepts Flow Builder allows for. In the first part of the research,
the majority of the developers who took part in the research managed to implement the simple application much quicker using Apex than Flow Builder.
The intermediate application needed much more Apex code and made use of concepts like bulkification of records, which are automated in Flow Builder,
so it was much easier to develop the second application in Flow Builder than Apex. In the second part of the research, execution times of the applications
using Apex and Flow Builder were compared, and the findings show the impact of Flow Builder “behind the scenes” automation, which was the root cause
of its more complex solutions slowdown.

Citation: M Grabowski (2024) Comparison of Software Development Solution Implementations in Lightning Flow Builder and Apex Programming Language in
Salesforce Technology. Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-175. DOI: doi.org/10.47363/JAICC/2024(3)162

J Arti Inte & Cloud Comp, 2024 Volume 3(1): 2-11

solutions (code only) and no-code solutions like Flow Builder
in Salesforce.

Instances and Organizations
The Salesforce platform is divided into servers called instances
which then are partitioned into organizations or orgs. The instances
are physical divisions, and the organizations are only logically
separated environments where users from the same organization,
like a company or an enterprise, can log in. Therefore, tens or
hundreds of the organizations may exist on a single instance and
operate on multitenant resources from a single server.

Multitenancy is the main domain of Salesforce because the
resources are available for a lot of customers. Users are assigned
to the profiles which use adequate licenses to utilize the features
of the Salesforce platform. Every internal organization built on the
instance of Salesforce would use the full computational capabilities
and the shared resources, but not only the part of the server that
was leased. At the same time, data security is guaranteed, and
every organization is separated from each other [4]. Only the
metadata and data from the organization would be accessed by that
organization, and there is no possibility to obtain any information
about the other organizations.

Users on the Salesforce Platform
On Salesforce instances, users are created using unique usernames.
The username cannot be duplicated on the whole platform because
users can log into any Production instance or any sandbox instance
using universal URL dedicated for those two types of instances.
For the production instance, the URL is https://login.salesforce.
com/, whereas for the sandbox instance, it is https://test.salesforce.
com/. Using the unique username and password, the Salesforce
platform automatically redirects the user to the correspondent
organization he or she was registered. It means that the user
should have an actual suffix at the end of the username, so that
it could be clear which organization the user relates to. What is
more, the username is built on a domain name convention like
electronic addresses, for instance john_smith@company.com.
sit. The suffix at the end means that this user comes from the SIT
(System Integration Testing) organization.

Declarative Tools and Programming Languages
The Salesforce Platform, formerly known as Force.com, is
the leading technology made by Salesforce, Inc. It provides a
multitude of tools, applications and widgets for developers to
build applications based on the Salesforce user interface [5].
The declarative tools mostly used to build automations and
user interaction screens are Flow Builder, Process Builder and
Workflow Rules. Custom applications are also built utilizing
Lightning Components (browser side) and Apex language (server-
side) [6].

Lightning Components is being divided into two frameworks: LWC
(Lightning Web Components) and Lightning Aura Components.
Both of those frameworks are based on the conceptions of stateful
client and stateless server. It means that the state of the application
is being kept on the client’s (browser) side and not the server. The
server is only designed to retrieve and save the data at the Salesforce’s
infrastructure side. Lightning Web Components and Lightning Aura
Components use JavaScript language to run actions on the browser.

Literature Overview
There are a couple of studies that verify the impact of utilizing
no-code tools instead of conventional programming solutions.

One of the researchers, Virta, compares the relation of low-
code development tools, like Flow Builder (formerly known
as Cloud Flow Designer) and Process Builder, to standard
software development including Apex programming language
and Lightning Components framework. The goal was achieved
by interviewing the employees in one of the Salesforce consulting
companies in Finland. It was confirmed that low-code solutions
are double-edged.

The benefits were indeed its fast development and the understanding
of the processes by non-technical people like clients. On the other
hand, when the system grows and processes start to be more
complex, there is a risk that the whole process of development
will be too expanded and hard to maintain. The interviewees also
mentioned the lack of unit tests in the Flow Builder and Process
Builder tools. Unit tests are required for every Apex code that is
being developed to check whether the reliability of the code is
achieved. The main drawback of the low-code solutions is also
their poor performance in more complex systems [7].

The whole study examines only the employees’ opinions expressed
in the survey and does not count the indicators like number of
clicks and presses on a keyboard and the time consumed to
implement the applications or execute the processes. It may seem
to be unsatisfactory and still more research could be recommended
to achieve more calculable results.

A practical approach is also taken by Miącz in his research into the
differences among the parameters of using point and click solutions
and the Apex code. It was compared how time consumption on
the Salesforce platform depends on the quality of bandwidth and
the type of the tool used to develop the solution. It was found
that the point and click solutions are less sized in megabytes and
execute less SOQL queries probably because of collecting all the
required conditions and running them at once [8]. Nevertheless,
that research does not show the essential differences in the time
needed to develop both conventional programming and the no-
code solutions.

In Salesforce.com
The Development Dilemma, the authors describe mainly the
history and achievements of the first years of the Force.com
technology. That study examines the methodology of project
management in Salesforce.com’s development process and how
the technology has risen to life [5].

The usability of the Salesforce platform and the capabilities of
tools have been frequently researched. The authors from the
Computer Science and Engineering Galgotias University discuss
the benefits of multitenancy in the CRM applications [9]. The
result of this multinational collaboration is the paper ‘A real-time
service system in the cloud’ that describes the details of cloud
computing architectures by means of Salesforce as an example.
The data model and all technological details are usefully referred
to [10].

The whole guides treating about the nature of software development
in the Salesforce platform are an excellent source of knowledge
[3,11,12]. As for the declarative tools like Flow Builder, Process
Builder and Workflows, there are also the sources that could help
in understanding that matter [6].

An interesting reference in the literature might be Kermanchi’s
thesis which compares the experiences of 18 developers who

Citation: M Grabowski (2024) Comparison of Software Development Solution Implementations in Lightning Flow Builder and Apex Programming Language in
Salesforce Technology. Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-175. DOI: doi.org/10.47363/JAICC/2024(3)162

J Arti Inte & Cloud Comp, 2024 Volume 3(1): 3-11

used both Apex programming and low-code solutions like Flow
Builder and Process Builder [13]. The experiment by Kermanchi
was verifying the participants’ thoughts and feelings about using
the tools mentioned above.

The findings have shown that the developers turned out to be
skeptical about the low-code development tools because they
had had the background and knowledge about a low scalability of
these solutions and reviewed programmatic tools as more suitable
for complex implementations. In conclusion, in programmers’
thoughts Apex is more efficient and useful for the processes that
are to be extended in the future.

The use of Apex language and the cases of how the Apex classes
are used to build real-time service systems in Salesforce are
described in one of conference papers [14]. The authors examine
the ways Apex language is being used, and what this language
enables the programmer to do. Apex is also compared to the other
programming languages and the authors let the reader know the
advantages and uniqueness of Apex in comparison to the other
languages. It is important to mention that the limitations of the
Salesforce platform and its back-end language are also presented
in this paper to indicate that the potential programmer works with
the cloud.

Basic Concepts of Work with Apex Programming Language
Apex is often being compared to Java as its main principles are
based on an object-oriented programming paradigm and its model
of class construction is nearly identical to the one known in Java.
The language is server-side and strongly typed which means that
the type of every variable needs to be predefined and stay the
same type in that context [4].

Moreover, Apex lets developers directly operate on database
with DML (Data Manipulation Language) operations and SOQL
(Salesforce Object Query Language) without a need to treat these
actions as an asynchronous operation which is vastly convenient
and allows the engineer of the system not to use callbacks or
promises (Figure 1). These operations work like an await
expression in JavaScript without having to use that expression.
The actions invoked with Apex have direct access to data sources
in the organization that the user is logged into. All results are
filtered with accesses and permissions that the user has – the
Salesforce platform is a supervisor on this account.

Salesforce has established the Execution Governors and Limits
document for the use of shared resources so the access to use
the multitenant platform is not monopolized. The Apex runtime
obliges system engineers to comply with those limits. If they are
not complied, the runtime throws an exception that cannot be
omitted with try-catch blocks. For instance, exceeding the limit
of the number of DML operations, the SOQL queries or execution
time in a transaction (10 seconds for synchronous and 120 seconds
for asynchronous with callouts to external systems) will throw a
System.LimitException exception.

While working with Apex language, one has to be conscious of
Salesforce API (Application Programming Interface) versions the
platform uses for the identification of the execution context of the
processes in the system (Figure 2). The API means the rules and
the principles on how the applications or programs communicate
with one another. The Salesforce API is a specification on how
external applications should communicate with the Salesforce
platform and send messages to it to request services or share data.

Within a single Salesforce organization, classes and triggers with
different versions can coexist. The version may be changed in any
moment. Classes with the same name though must not be saved
upon a few different versions.

It is worth saying a word about the use of DML operations outside
any loops. Developers ought not to do it at any circumstances
because it is a way to the quick reaching to execution limits and
throwing an exception. Rather than including a DML operation
in the loop, the developer should add all records to the list in the
loop, and the DML statement ought to be performed after the
loop block.

Figure 1: Sample of a DML Operation in Apex Language -The
Unit Test Method of Inserting Account Records

Figure 2: Choice of Salesforce API Versions for the Apex Class

SOQL as an Auxiliary Language for Apex SELECT Operations
with Database
One could possibly notice that the DML operations which could
be insert, update, upsert, delete, merge and undelete do not contain
the ‘select’ queries to the database, because those queries are
performed with SOQL. Every SOQL statement is included in Apex
using square brackets and the returned value of that statement
would be either a list of records or a single record (Figure 3). A
system engineer has to be careful though, because if the returned
value is a list of more than one record, the assignment of this list
into the variable of type record and not a list, would result in an
exception. A SOQL query in its form would be considered as a
dialect of SQL (Structured Query Language).

Figure 3: Line 6 of the above code contains an example of a
SOQL query. At the end of the query, there is a binding to Id of
“a” variable inserted in the 3rd line.

Citation: M Grabowski (2024) Comparison of Software Development Solution Implementations in Lightning Flow Builder and Apex Programming Language in
Salesforce Technology. Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-175. DOI: doi.org/10.47363/JAICC/2024(3)162

J Arti Inte & Cloud Comp, 2024 Volume 3(1): 4-11

Developer Tools Designed for Apex
With the Salesforce platform, one of the tools delivered was
Developer Console considered an editor for Apex classes, Aura
components, debugging of code, executing tests, examining
the unit test code coverage and viewing the logs on several
different levels of complexity. Developer Console has even more
possibilities. It allows us to execute direct SOQL queries. With the
use of Developer Console, one might execute an anonymous Apex
code which is essential to verify the validity of a newly written
code. The user interface is quite simple and convenient. There are
some disadvantages though. The layout and background design
cannot be changed, so a programmer is enforced to work with
a light-oriented theme of the environment in the user interface,
not having the possibility to choose a dark theme which makes
possible to work at night without eye strain. The Lightning Web
Components framework components cannot be developed using
Developer Console. Developers are encouraged to use Visual
Studio Code instead.

Yet another developer tool is Visual Studio Code used to manage
the metadata of the Salesforce platform and develop solutions.
This tool has a variety of extensions dedicated, especially for use
of Salesforce developers. With these extensions, it enables to do
exactly the same operations which are enabled using Developer
Console and even more. Also, the possibilities of changing the
design of this tool allows a developer to feel confident about the
conditions of developing solutions. With the Salesforce Extension
Pack, Visual Studio Code is able to create components for the LWC
framework and deploy them to the platform. The extensions allow
us to highlight the syntax, integrate with the remote Salesforce
platform, run asynchronous tests on the platform without the use
of command line, execute SOQL queries and more.

No-Code Solutions to Automate the Processes on the Salesforce
Platform
Several no-code tools have been introduced by Salesforce over
the past twenty years. At the very beginning of Force.com, there
were Workflows, and their basic application was to provide a
self-explanatory, easily maintainable instrument for business logic
automations. The Workflows are effortless to utilize, because they
suffer from absence of many features found in the newer tools
like Process Builder and Flow Builder. For instance, the Workflow
does only evaluate a single output at a time with only a single set
of entry criteria, cannot perform complex actions, is not able to
delete any records and may update only related records’ fields.
Flow Builder itself does enable all of these actions.

Process Builder is one more no-code solution tool which may be
applied to automate more complex business processes than the
Workflow. This tool is capable of evaluating one condition after

another and after fulfilling the criteria, the operations defined for
that criteria are executed. Processes built with Process Builder
might start with:
•	 The values on specified fields change (record gets updated

or inserted),
•	 An outbound message is received from the channel of

platform events,
•	 The process is launched by another process.

Operations that can be launched with Process Builder are, for
example: create a record, update a record, execute a Quick Action
on the Salesforce platform, launch a Flow, insert a post in Chatter,
invoke an Approval, execute Apex code. Process Builder is
not limited to executing immediate actions. The other type of
operations is scheduled actions which enable time shifting of
action executions.

Both Workflows and Process Builder are getting deprecated.
Creation of new Workflows was turned off with the Winter ’23
release of the Salesforce platform, whereas the ability of creating
new processes utilizing Process Builder is planned to be disabled
in the Summer ’23 release.

Flow Builder as the Most Convenient Tool for No-Code
Processes Automation
Lightning Flow is a type of process built using a declarative tool
called Flow Builder. This no-code solution does not need any
Apex code, however adding a code is possible by adding an Apex
code block in the flow schema to send the data from a flow to one
of the Apex methods in the Apex class – then the execution of
the process continues in the Apex method. The way of building
processes using Flow Builder is fairly simple. There are two
modes setting the mechanism of building the flow. If the mode
is set to Freeform, one should add the blocks to a flow by the
drag’n’drop feature from the block list on the left in the Toolbox.
If the mode is set to Auto-Layout, adding blocks is possible using
the “+” icon on the appropriate line between the blocks and then
choosing the type of block.

Lightning Flow resembles flowcharts diagrams used to describe
the algorithm’s step-by-step approach. The Start and End blocks
are marked with a circle at the top and bottom of the flow. The
conditional operations (Decision blocks) are diamonds, and
the other operations like assignment of the variable, a loop or
CRUD (Create Read Update Delete) operations are marked with a
square (Figure 4). CRUD operations are the four basic executable
operations in the database using the statements: insert for creation
of records, select for reading the records, update for modifying
the records or delete for removing the records.

Citation: M Grabowski (2024) Comparison of Software Development Solution Implementations in Lightning Flow Builder and Apex Programming Language in
Salesforce Technology. Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-175. DOI: doi.org/10.47363/JAICC/2024(3)162

J Arti Inte & Cloud Comp, 2024 Volume 3(1): 5-11

Figure 4: User interface of Flow Builder with Auto-Layout mode. The Picture Shows One of the Standard Flows Added with the
Basic Features of the Salesforce Platform.

Flow Builder allows us to build a few basic types of Flow processes that depend on requirements (Figure 5). These can be the Screen
Flows which are the interactive processes launched in the window that brings the user interface to communicate. This type of Flow
has an additional type of the block, comparing to the other Flows. It is the Screen block which has all the possible kinds of form
inputs and outputs for displaying values. Building the block of Screen is about dragging and dropping components and configuring
them using inputs for metadata like the label of that input field, the API name, “required” modifier, a default value etc. It is possible
to add custom inputs that were programmed using Aura and Lightning Web Components frameworks.

Another type of the Flow process is a Record-Triggered Flow. It is an automatically triggered process that activates on the insertion,
update or deletion of the record of the selected object. This specific Flow may be compared to Apex Trigger. Apart from the type of
CRUD operation and the name of object, it is needed to select the optimization type of the Flow of two: Fast Field Updates and Actions
and Related Records. The Fast Field Updates optimization type is executing the process before the specified CRUD operation, and
Actions and Related Records executes the process after the CRUD operation on the database. Both of those are used depending on if
the record should already exist and have the identifier or the system should update the data before inserting the record to the database.

Figure 5: The Choice of Type of the Process for Initialization of the Flow

Citation: M Grabowski (2024) Comparison of Software Development Solution Implementations in Lightning Flow Builder and Apex Programming Language in
Salesforce Technology. Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-175. DOI: doi.org/10.47363/JAICC/2024(3)162

J Arti Inte & Cloud Comp, 2024 Volume 3(1): 6-11

Other types of Flow processes are the Schedule-Triggered Flow,
the Autolaunched Flow (No Trigger) and the Platform Event-
Triggered Flow. The Schedule-Triggered Flow is executed in
the certain type in the future based on other actions (e.g. a day
after inserting the record) with a selected frequency. The Event-
Triggered Flow would be a process that is launched when an
event occurs on the Salesforce platform and the conditions are
fulfilled. The events may be triggered by the Apex code, the other
Flows or by external systems (using REST or SOAP queries).
REST (Representational State Transfer) and SOAP (Simple Object
Access Protocol) are protocols which enable the systems to be
integrated with one another by exchanging the data between them.
The last one type of the Flow, the Autolaunched Flow (No Trigger),
is a flow that does not have the specification of the object and the
CRUD operation required to launch the flow. This process can be
launched by the Apex code, other processes or API call.

Possible Limitations of the Use of the Flow Builder
Using Flow Builder to implement solutions has its disadvantages
which are the limits that do not exist when the developer chooses
to implement the solution in Apex language. Below, there are
several of the issues that a developer may encounter using Flows.
•	 Having implemented more than one process on the same

object and of the same CRUD operation does not guarantee
that the order of executing the processes is kept the same.

•	 Using of the Subflows and Apex actions does not produce the
detailed information on the Execution Track Log.

•	 In the case of the automation of the Record-Triggered Flows,
it is often noted that there is a poor performance of nested
formula calculations. That issue becomes major when there
are a lot of records being evaluated by the trigger (and there
can be up to 200 records per batch) because formulas are
being compiled and calculated serially, while the process is
in operation [15].

•	 It is not possible to use the ‘LIMIT’ operator in SOQL queries
without using the Apex code. The only build-in feature for
Lightning Builder is to reduce the returned records to 1.

•	 It is not possible to use the ‘IN’ operator without using the
Apex code.

•	 The RTF (Rich Text Field) inputs in HTML formatted texts are
not supported well. The HTML tags <a>, ,
, ,
<i>, , <p>, , <u>, <div> are converted into a text.

•	 There is no type of associative array or map in the Flow
processes. In the case of the requirement to save key-value
variables in a map, one should use an additional loop. It may
be time-consuming and not so efficient.

•	 Flow Builder does not support UTF-8 encoding in text inputs.

Methodology of Research
The Comparison of Implementation Speed in the Apex Language
and Flow Builder Applications
 In the research 10 developers were asked to implement two
applications: simple and compound. They got an exact instruction
on what should be implemented at a suitable level of detail. The
questions the developer was asked were answered before and during
the time of an attempt of implementation. The developers could go
back to the instructions at any moment of the experiment. They
were familiar with the Salesforce platform and the environment as
it was their self-prepared place of work. Their experience differed
due to the years of working with the Salesforce platform: Junior
(less than 2 years of experience), Regular (2-5 years of experience)
and Senior (over 5 years of experience). The knowledge of the
developers may vary but their overall experience of how to handle
the issues with the technology in theory should be higher than the

Regular and Senior skill levels.

Once the attempt began, the programmers had Visual Studio
Code environment with the Salesforce Extension Pack installed
and configured. The instance of the Salesforce platform used to
perform the research was EU42. It was established that Apex
unit tests are not necessary. As the unit tests are other programs
to be developed independently of the rest of the application, it
could take relatively much time. Once the developer was ready,
the stopwatch was turned on. The stopwatch was a device with
10ms precision.

It was necessary to implement both applications, namely Apex
language and Flow Builder in two environments, so, overall,
a single developer created four applications in four different
timespans. One of the developers did not finish the compound
application for Apex and Flow Builder, and another one did
not finish the Flow Builder compound application only. The
reason why the developer did not manage to accomplish the
implementation is that it was abandoned due to time out for
completing it and that the developer did not wish to continue the
experiment.

The implemented simple application was an Apex trigger that
would invoke after the moment an Account record was inserted to
the database. The trigger then should create ten records of Contact
object related to the created Account. For every new inserted
Contact record, the fields should be copied from an Account
record. Those fields were: Address, Phone, Fax, AccountId,
LastName, Description. This process required a simple loop that
should create 10 Contact records. For Flow Builder solutions, it
would cause confusion because the standard ‘Loop’ block could
not be used. That is why a programmer had to build it similarly
to the sample process exemplified in Figure 6.

Figure 6: The Sample Process Built With Flow Builder for the
Simple Application

The latter application was a compound one regarding its
implementation, but not necessarily time-consuming while
executing. That application consisted of a few triggers. The call of
the first trigger should occur after an Account record was inserted
or updated. The trigger should select all the Opportunity records

Citation: M Grabowski (2024) Comparison of Software Development Solution Implementations in Lightning Flow Builder and Apex Programming Language in
Salesforce Technology. Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-175. DOI: doi.org/10.47363/JAICC/2024(3)162

J Arti Inte & Cloud Comp, 2024 Volume 3(1): 7-11

related to the updated Account record. If there is no Opportunity
for an Account, the application should create one per Account. The
developer should bulkify records in a list so that the application
does not call DML operations of SOQL queries more than it is
allowed according to Governor Limits.

After creating the first trigger, the developer was to create the
second one for an Opportunity record (before inserting the trigger)
(Figure 7). This trigger should add a new Pricebook2 object
record and then relate Opportunity with that Pricebook. For the
Pricebook2 object, there should be a Price Book Entry created
and per every Price Book Entry record another Product2 object
record as well. For each of these records, the developer was to
input default values and the relationships between the records.

Figure 7: The sample process built with flow builder for the
second trigger of the compound application. It is clear that there
is no loop and the whole process is not complicated

The complexity of the apps was determined by the number
of operations the process in the application should execute in
traditional code-based programming (not the no-code solutions)
and the number of objects used for the process. The simple
application was to use only the Account and Contact objects (2 in
number), and the compound application was defined with Account,
Opportunity, Pricebook2, Price Book Entry and the Product2
objects (5 in number). For the simple application, the developer
should create 10 Contact records per Account created with a few
fields filled with values, and for the complex application, the
developer should create different object records and collect the
records in lists to use them in references in other records.

The Comparison of Code Execution Time in the Apex
Language and Flow Builder Application
In order to verify the performance of the simple application, the
Apex Anonymous Block was executed with 20 Account records
for one series of executions and 200 Account records for the
second series of executions. Those two types of transactions were
executed 50 times. After each execution all the data was deleted,
so the database would be empty. Because of the created trigger,
with every of the 20 Account records there were also created 10
more Contact records, which caused overall 220 records created
in one transaction. For 200 Account records, it was 2200 overall
records created per one transaction.

Similar to the compound application, the identical process was
performed. For every 20 Account records, there were 140 overall
records created, and for 200 Account records, it was 1400 records.
The research was conducted on EU42 Salesforce instance on 20
January 2023 afternoon.

The tool used for time execution logging was a Developer Console’s
Debug section. The EXECUTION_STARTED event indicated the
start of execution time and the EXECUTION_FINISHED event
indicated the end of execution time. The Debug Log shows the
time of these events with 1ms precision.

Results of Research
The results of the research are presented as box-plots to show all
the indicators of the collected data.

For the first part of the research, the charts were divided into the
several box-plots depending on the seniority of the developers. The
first two box-plots (Figure 8) present the results from the simple
application implementation times of the developers performing
the experiment in Apex and Flows, respectively. The second image
(Figure 9) shows the compound application implementation times.

The results of the second part of the research present the application
execution times, and the sample applications from Apex language
and Flow Builder tool are compared. The simple application
results (Figure 10) have two boxes for the 20 Account creation
experiment and 200 Account creation experiment. Similarly, the
compound application results (Figure 11) have the same concept
as the simple application results.

Citation: M Grabowski (2024) Comparison of Software Development Solution Implementations in Lightning Flow Builder and Apex Programming Language in
Salesforce Technology. Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-175. DOI: doi.org/10.47363/JAICC/2024(3)162

J Arti Inte & Cloud Comp, 2024 Volume 3(1): 8-11

Figure 8: Box-plots for the Simple Application. Left-Apex Application Implementation. Right-Flow Builder Application Implementation.

Figure 9: Box-Plots for the Compound Application. Left-Apex Application Implementation. Right -Flow Builder Application
Implementation.

Figure 10: Box-plots for the Simple Application Execution Times Per Research. There were four series: Apex with 20 Accounts,
Flow Builder with 20 Accounts, Apex with 200 Accounts, and Flow Builder with 200 Accounts.

Citation: M Grabowski (2024) Comparison of Software Development Solution Implementations in Lightning Flow Builder and Apex Programming Language in
Salesforce Technology. Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-175. DOI: doi.org/10.47363/JAICC/2024(3)162

J Arti Inte & Cloud Comp, 2024 Volume 3(1): 9-11

Figure 11: Box-plots for the Compound Application Execution Times Per Research. There were four series: Apex with 20 Accounts,
Flow Builder with 20 Accounts, Apex with 200 Accounts, and Flow Builder with 200 Accounts

Discussion and Conclusions
The Comparison of Code Execution Time in the Apex
Language and Flow Builder Application
The programming in Apex lasted longer for the least experienced
programmers. For the simple application, the junior developers
were implementing the app 2.4 min. on average slower than the
regular developers and 2.7 min. slower than the senior ones. For the
compound application, the junior developers were implementing
the app 3.8 min. on average slower than the regular developers
and 10.7 min. slower than the senior ones. The performance by
the regular and senior developers was comparable, including
the simple application, and it was much better for the senior
developers, including the compound application (6.9 min. faster
for the senior developers). The Flow solution implementing
process was quite more diverse for all programmers, and no single
group can be impartially indicated a winner, though averagely
the senior group remains the quickest in both variants of the
application, but for the compound application, the seniors are
only slightly quicker than the other groups.

What might be surprising is that one of the junior developers was
quicker than any other developer in implementing both variants
of applications – this person reached times at most 16 minutes for
the compound application and about 14.8 minutes for the simple
application. It is, however, clear from Figures 8 and 9 that there
was also one junior developer who was the slowest of all the
developers and reached the time of over 28 minutes to implement
the compound application and over 24 minutes to implement the
simple application. That is why the average time of the junior
developers on Flow Builder application is still higher than that
of the senior ones.

Because of the low diversity of the simple application
implementation, the time of the implementation in Apex language
was way shorter than the implementation process in Flow Builder.
On average, the time of the simple app implementation in Apex
was 13.5 minutes shorter than in Flow Builder. The quickest

attempt in Apex was 4.07 minutes and in Flow Builder it was
14.71 minutes.

The findings on the second compound application are different from
the first one. It turns out that the mean time of the implementation
in Apex has exceeded the time of implementation in Flow Builder
by 12.18 minutes.

It may be a case that the implementation of the simple app in
Flow Builder might have been more difficult because of a custom
‘while’ loop problem. In Apex, it is fairly easy to write a ‘for’ or
‘while’ loop. In Flow Builder, there is only a build-in ‘for each’
loop, so a developer needs to initialize variables in Toolbox’s
Manager, and this needs a lot more clicks than a usual code. This
solution is also not very quick to be invented by a programmer.
The quicker time of debugging for Apex might have impacted on
the times of both implementations because the debugging tools
for Flow Builder have not been developed much yet comparing to
the Apex tools which have been developed since 2006, i.e. when
the language was released, whereas Flow Builder was released
in its current version in 2019. Still, graphical debugging and the
process of opening operation blocks in the window in Flow Builder
take longer than code investigation and placing system log lines
to verify the values of the variables.

Bulkification of records was evident in the compound and not
the simple application.. Regarding the specifics of the Salesforce
platform, the DML operations should not be executed in a loop,
so a developer has to collect records in a list and then execute a
DML operation, which is time-consuming to implement if records
are related and there are more complex requirements. If there is a
need to work with many records which are correlated with other
records, a developer needs to include all of other records in a list
or a map to process many records in a single transaction.

This has to be done if a developer needs to use the data from these
related records in the code. This process should be executed to

Citation: M Grabowski (2024) Comparison of Software Development Solution Implementations in Lightning Flow Builder and Apex Programming Language in
Salesforce Technology. Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-175. DOI: doi.org/10.47363/JAICC/2024(3)162

J Arti Inte & Cloud Comp, 2024 Volume 3(1): 10-11

avoid unnecessary queries to database to collect data for every
single record that has a relationship to other record. That technique
involves not exceeding the limits of the cloud in transaction. If
there are any loops in the code containing a query to database, the
technique of bulkification applies. It is used to cover all queries in
a single query before the loop and save results in the heap memory.

This problem does not occur in Flow Builder because it is
automated and bulkification occurs behind-the-scenes so the
implementation of the compound solution in Flow Builder was
much simpler than in Apex. What is more, there was no need to
implement a facile ‘while’ loop in the compound application which
turned out to be more difficult to implement in Flow Builder. From
the perspective of the Salesforce developer, the first application
was quicker to implement in Apex, but slower in Flow Builder,
whereas the compound one was quicker to make in Flow Builder,
but more complex in Apex.

The Comparison of Code Execution Time in the Apex
Language and Flow Builder Application
To unambiguously show which methods and tools are able to
provide better optimized applications, there was one more study
needed. Both applications (simple and compound) had to be tested
on the Salesforce platform environment to check debug logs for
the execution times of these applications for both tools, namely
Apex and Flow Builder.

The Apex-programmed simple application managed to create 20
Account records in about 1s on average. The analogic task was
completed by Flow Builder a little bit later, i.e. in about 1.05s.
The Apex-programmed simple application created 200 Account
records in 9.2 s on average, whereas the Flow Builder solution
needed almost 9.35s on average to complete this task.

The results for compound application were completely nowhere
near the simple application outcome. The differences between
the Apex-programmed solution and Flow Builder process were
relevant to what had been expected. To create 20 Account records,
the Apex solution needed an average time near to 0.85s, whereas
the Flow Builder application was on average faster than 1s. Similar
differences were recorded for the 200 Account records experiment.
The Apex language completed the task in 5.4s on average, whereas
the Flow Builder in about 6.3s.

While this difference is not so considerable for the simple
application, there is a significant deviation in the compound
application executions for the Apex and Flow Builder built
solutions. It seems probable that it is automatic bulkification
that occurs behind-the-scenes for Flow Builder due to the
significant difference in time execution. Due to fact that in Apex
the programmer must optimize the code and in no-code solutions
it is a matter of imperfect process, the differences in execution
time cannot be ignored. If the application consisted of hundreds
of processes and automations, it would be difficult not to exceed
the limit of time execution and the no-code solution would worsen
that issue.

Our research shows that the compound application is much slower
in execution when it is implemented in Flow Builder than the
Apex coding although it takes longer in the development process
to implement the solution coded in Apex than Flow Builder. It
should also be remembered that the commercial systems are
usually much more complex and the processes in them need to
be executed as soon as possible to avoid delays. Having that in

mind, it is recommended to use Apex programming for compound
applications and processes rather than the no-code solution. On
the other hand, there are simple applications whose execution time
is comparable to the Apex programming method.

The implementation time of the simple application takes longer
in Flow Builder than Apex, but the flows are much more readable
for a non-technical person than the code. The scalability of such
solutions is not very well if the developer had a task to expand the
solution. For small processes, it is, however, more convenient to
use Flows than traditional programming because of their clear user
interface and the fact that a non-technical person could modify
them. In simple applications, both solutions have their pros and
cons so it is a developer or a product owner who can decide which
method to use and why [16-18].

References
1.	 Marańda W, Poniszewska-Marańda A, Szymczyńska M

(2022) Data Processing in Cloud Computing Model on the
Example of Salesforce Cloud. Information 13.

2.	 Miłosz M, Michalczyk M, Wojdyga A (2014) Cloud
Computing on the example of Salesforce, Problems of
Contemporary Engineering. Programming technologies.

3.	 Kao L, Paz J (2016) Salesforce for Dummies.
Hoboken, New Jersey, USA: John Wiley
& Sons, Inc https://www.wiley.com/en-be/
esforce+For+Dummies%2C+7th+Edition-p-9781119576327.

4.	 Developer Docs (2022) Salesforce https://developer.
salesforce.com/docs#browse.

5.	 Levitt ER, Fry C, Greene S, Kaftan C (2011) Salesforce.com:
The Development Dilemma. Collaboratory for Research on
Global Projects http://stanford.edu/~robertk3/APM/HO%20
00244%20Salesforce.pdf.

6.	 Weinmeister P (2015) Practical Salesforce.com Development
Without Code: Customizing Salesforce on the Force.com
Platform. Standard Libraries https://searchworks.stanford.
edu/view/10805362.

7.	 Virta T (2018) Relation of low-code development to standard
software development. Lappeenranta University of Technology
https://lutpub.lut.fi/bitstream/handle/10024/158441/masters_
thesis_virta_tatu.pdf?isAllowed=y&sequence=1.

8.	 Miącz D (2019) Performance analysis of methods for building
applications on the Salesforce platform. Journal of Computer
Science Institute 10: 24-27.

9.	 Patel S, Sharma S, Prasad R (2020) Multitenant Effective CRM
Application Using Salesforce. Reserachgate https://www.
researchgate.net/publication/338701344_MULTITENANT_
EFFECTIVE_CRM_APPLICATION_USING_SALESFO
RCE?channel=doi&linkId=5e25ede792851c89c9b5990c&
showFulltext=true.

10.	 Poniszewska-Marańda A, Matusiak R, Kryvinska N, Yasar
A (2020) A real-time service system in the cloud. Journal of
Ambient Intelligence and Humanized Computing 11.

11.	 Battisson P (2020) Learning Salesforce Development with
Apex. BPB Publications https://bpbonline.com/products/
learning-salesforce-development-with-apex.

12.	 Davis A (2019) Mastering Salesforce DevOps: A Practical
Guide to Building Trust While Delivering Innovation. https://
link.springer.com/book/10.1007/978-1-4842-5473-8.

13.	 Kermanchi A (2022) Developer Experience in Low-Code
Versus Traditional Development Platforms-A Comparative
Experiment. Aalto University https://aaltodoc.aalto.fi/
server/api/core/bitstreams/18f9453c-5930-4a94-a545-
4f9dc51be7aa/content.

Citation: M Grabowski (2024) Comparison of Software Development Solution Implementations in Lightning Flow Builder and Apex Programming Language in
Salesforce Technology. Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-175. DOI: doi.org/10.47363/JAICC/2024(3)162

J Arti Inte & Cloud Comp, 2024 Volume 3(1): 11-11

Copyright: ©2024 M Grabowski. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

14.	 Poniszewska-Marańda A, Matusiak R, Kryvinska N (2017)
Use of Salesforce Platform for Building Real-Time Service
Systems in Cloud. IEEE 14th International Conference
on Services Computing https://ieeexplore.ieee.org/
document/8035025.

15.	 White A (2021) 7 Things Architects Should Know About
Flow. Medium https://medium.com/salesforce-architects/7-
things-architects-should-know-about-flow-8173ddeeae28.

16.	 Help (2022) Salesforce https://help.salesforce.com/s/.
17.	 Salesforce Trailhead (2022) Salesforce https://trailhead.

salesforce.com/.
18.	 Tamoń P (2021) Analysis of the Lightning Experience

environment capabilities on the base of the CRM system
implementation using the Salesforce cloud platform.

