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Introduction 
The term neural networks refers to the networks of neurons in the 
mammalian brain. Neurons are its main units of computation. In 
the brain, they are connected together in a network to process data. 
This can be a very complex task, and so the dynamics of neural 
networks in the mammalian brain in response to external stimuli 
can be quite complex. The inputs and outputs of each neuron 
change as a function of time, in the form of so-called spike chains, 
but the network itself also changes. We learn and improve our 
data processing capabilities by establishing reconnections between 
neurons [1-3].  The training set contains a list of input data sets 
along with a list of corresponding target values that encode the 
properties of the input data that the network needs to learn. To 
solve such associative problems, artificial neural networks can 
work well-when new data sets are governed by the same principles 
that gave rise to the training data [4]. 

Neural Networks 
The mammalian brain is made up of different areas that perform 
different tasks. The cortex is the outer layer of the mammalian 
brain. We can think of it as a thin sheet (2 to 5 mm thick) that 
folds on its own to increase its surface area. The cerebral cortex 
is the largest and most developed part of the human brain. It 
contains a large number of nerve cells, neurons. The human cortex 
contains about 1010 neurons. They are connected by nerve threads 
(axons) that branch out and end in synapses. These synapses are 
connections to other neurons. Synapses connect to dendrites, 
branched extensions of the body of a nerve cell designed to receive 
input signals from other neurons in the form of electrical signals. 
A neuron in the human brain can have thousands of synaptic 
connections to other neurons. The resulting network of connected 

neurons in the cortex is responsible for processing visual, audio, 
and sensory data. Fig.1 Neurons in the cerebral cortex (the outer 
layer of the brain, the largest and most developed part of the human 
and mammalian brain).  Fig.2 shows a more schematic view of the 
neuron. The information is processed from left to right. On the left 
are the dendrites that receive the signals and connect to the cell 
body of the neuron, where the signal is processed. The right part 
of the picture shows the axon through which the output is directed 
to the dendrites of other neurons. The information is transmitted as 
an electrical signal. The information is transmitted as an electrical 
signal. Fig.3 shows a Schwann cell, which can be in a neutral 
state and create a left positive or right negative chirality on the 
axon. Fig.4 shows an example of the time series of the electric 
potential of a pyramidal neuron [5]. The time series consists of 
an intermittent series of electric potential jumps. Periods of rest 
without spikes occur when the neuron is inactive, and during 
periods rich in spikes, the neuron is active. Fig.4D Temporary 
portraits of the system (1). 
 

Figure 1:  Neurons in the cerebral cortex (the outer layer of the 
brain, the largest and most developed part of the human and 
mammalian brain)
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ABSTRACT
This paper presents the dynamic model of the soliton. Based on this model, it is supposed to study the state of the network. 
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Figure 2: Schematic representation of a neuron. Dendrites receive 
input signals in the form of electrical signals through synapses. 
The signals are processed in the cell body of the neuron. The 
output signal is transmitted from the body of the nerve cell to 
other neurons via the axon

Figure 3: Shows a Schwann cell, which can be in a neutral state 
and create a left positive or right negative chirality on the axon

Figure 4: Shows an example of the time series of the electric 
potential of a pyramidal neuron. The time series consists of an 
intermittent series of electric potential jumps

The Mathematical Dynamic Model of the Soliton
The mathematical dynamic model of the soliton is represented 
by the equation (1) [6,7]. 

                                                                                        (1)

Time portraits of the system (1) are shown in Fig.5(a) active 
with positive 
a =1.0, a1 = 0.2, a2 = 0.1, a3 = 1.0, b = –2.0, k = 0.045, ω = 64π 
and negative 
a =–1.0, a1 = 0.2, a2 = –0.1, a3 = 1.0, b = 2.0, k = 0.045, ω = 64π 
chirality.
 Fig.5(b) passive positive a =0.09, a1 = 0.2, a2 =0.1, a3 = 1.0, b 
= –0.09, k = 0.045, ω = 64π and negative a =–0.09, a1 = 0.2, a2 
= –0.1, a3 = 1.0, b = 0.09, k = 0.045, ω = 64π chirality:

Figure 5: Temporary portraits of the system with chirality.  (1) 
at: a) x0 = 0.4, y0 = 0.4, z0 = 2.5, b) x0 = 0.4, y0 = 0.4, z0 = 0.09.  

Figure 6: Temporary portraits of the system with no chirality.  (1) 
at : a) x0 = 0.4, y0 = 0.4, z0 = 2.5, b) x0 = 0.4, y0 = 0.4, z0 = 0.09.  

Time portraits of the system (1) are shown in Fig.6(a) active 
with positive             
a =1.0, a1 = 0.2, a2 = 0.1, a3 = 1.0, b = 2.0, k = 0.045, ω = 64π 
and negative 
a  = –1.0, a1 = 0.2, a2 = –0.1, a3 = 1.0, b = –2.0, k = 0.045, ω = 
64π lack of chirality.                              
Fig.6(b) passive positive a =0.09, a1 = 0.2, a2 =0.1, a3 = 1.0, b 
= 0.09, k = 0.045, ω = 64π and negative a =–0.09, a1 = 0.2, a2 
= –0.1, a3 = 1.0, b =– 0.09, k = 0.045, ω = 64π lack of chirality:

Result 
The active states of the system are shown in Fig.5a, and their active 
states are shown in Fig.2(top) in yellow and Fig.4(E,F) in green.                                                                                 
The active states of the system are shown in Fig.5b, and their 
active states are shown in Fig.2(bottom) in yellow and Fig.4E in 
purple. Creates a continuous chaotic modulation.  

The inactive state of the system is shown in Fig.6a its active state 
is shown in Fig.4(A,C) in yellow. It is presented in a limited time 
frame.  

The inactive state of the system is shown in Fig.6b its inactive 
state is shown in Fig.4(B,C) in blue and Fig.4F in purple. It is 
presented in a limited time frame. 
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Summary
Artificial neural networks use a highly simplified model for the 
fundamental computing unit-the neuron. In its simplest form, the 
model is simply a binary threshold unit. The network performs 
these calculations sequentially. Usually, discrete sequences of 
calculation time steps are considered, t = 0,1,2,3,.... Either all 
neurons are updated simultaneously at one time step (synchronous 
update), or only one selected neuron is updated (asynchronous 
update) [8-19]. We proposed a different approach to use the wave-
soliton approach, taking into account chirality. In the presence of 
different chirality, three states are possible, with positive chirality, 
the signal is transmitted without loss, with negative chirality, the 
signal creates pulsations in certain parts of the axon. In the absence 
of a signal, a chaotic self-excitation is observed in the axon. A run 
a way with no chirality exists for a short time and represents a 
stop signal. The conclusion is that the soliton model can be used 
to study the behavior of an individual axon. 
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