
J Econ Managem Res, 2023 Volume 4(1): 1-5

Building Enterprise-Wide API-First Strategy for Medium to Large
Organizations

1Enterprise Architecture Leader, Fortune Brands Home & Security, USA

2Sr Architect, Fortune Brands Home & Security, USA

Nilesh D Kulkarni1* and Saurav Bansal2

*Corresponding author
Nilesh D Kulkarni, Enterprise Architecture Leader, Fortune Brands Home & Security, USA.

Received: February 10, 2023; Accepted: February 17, 2023; Published: February 24, 2023

Abstract
In this paper, we provided a comprehensive guide on implementing an API-first approach within medium to large organizations. The basic framework
starts by defining APIs and their role in modern business systems, using an example of two companies sharing order-related information through APIs.
We covered the concept of API-first as a design philosophy, the growth of API usage, and the complexities faced by medium to large organizations in API
adoption. The paper also discusses different integration patterns, the importance of understanding API and integration strategies, and the key elements
for a successful API-first integration strategy. Additionally, it emphasizes the role of API gateways, the need for standardized API documentation, and the
avoidance of excessive reuse of APIs. The document highlighted the importance of measuring API success using business KPIs. The paper concludes with
the real-life example of the large organization with complex ERP and data systems and how the guidelines provided in the paper can help abstract the
complexities with the help of API-First approach, finally the paper covered the security and data consistency as an important factor in defining the strategy.

Keywords: API-First, Integration, Microservices, Legacy
Systems, Governance, Scalability, API Gateway, KPIs (Key
Performance Indicators)

Introduction
API which stands for Application Programming Interface is a set of
rules, protocols, and tools for interfacing software or applications
[1]. Essentially, an API specifies how software components
should interact, allowing heterogeneous software systems to
communicate with each other using a language contract. APIs are
used for integrating applications, to enable modern web and mobile
experiences, and to deliver new digital business as private API’s
to be utilized within the organization’s secure boundary or public
APIs in partner ecosystems. APIs abstracts the complexity of a
system by providing a simplified version of a system's functionality
without exposing the underlying code or logic. This makes it easier
to integrate and use certain functionalities of a system exposing
those functionalities using APIs without needing to understand
the entire system

API within Business Context
How does APIs Work within Business System Context
Let’s understand the role of an API, with an example Let’s say
two companies wants to share the order-related information using
APIs, where company “A” is a good manufacturer which supplies
the goods to a retailer company “B”. The conversation between

two companies’ computer systems using APIs might look like this
(see Figure 1: API in a business process flow context)
1.	 Company A exposed Order Management partner APIs for

retailers to use and send purchase orders.
2.	 Company B integrates Company A's Order Management API

into its procurement system.
3.	 Company B’s procurement system sends a purchase order

request to Company A via the API, The API request includes
details like product IDs, quantities, and delivery information,
that is required as per company A’s order management APIs.

4.	 Company A's system receives the order and processes it.
5.	 The Company A's API responds to Company B with an order

confirmation, including an estimated delivery date.
6.	 Company A has also exposed another partner API that can be

called to request order status which provides real-time status
on order processing, dispatch, and estimated time of arrival.

7.	 Company B regularly queries the API for order status updates.
8.	 Once the order is delivered, Company A's API sends a delivery

confirmation to Company B by calling their Company B’s
APIs.

9.	 The company A generates an invoice and sends it to Company
B for payment processing by calling Company B’s APIs.

10.	 Company B calls company A’s APIs to make the payment,
which is then processed by company A and a payment success
response is sent by company A’s API.

Review Article Open Access

ISSN: 2755-0214

Journal of Economics & Management
Research

Citation: Nilesh D Kulkarni, Saurav Bansal (2023) Building Enterprise-Wide API-First Strategy for Medium to Large Organizations. Journal of Economics & Management
Research. SRC/JESMR-291. DOI: doi.org/10.47363/JESMR/2022(4)219

J Econ Managem Res, 2023 Volume 4(1): 2-5

Figure 1: API in a Business Process Flow Context

In the Figure 1 API in a business flow context is an example of
the APIs allowing two systems to borrow functionality and data
from one another and become reusable building blocks to many
business capabilities eliminating need of the manual interactions
between two business entities company “A” and company “B”.

API-First Approach
“API-first” means using APIs as the preferred method of accessing
applications, platforms and data and is a design philosophy that
prioritizes the creation of APIs at the outset by placing them at
the core of the enterprise application's architecture.

APIs are a good option for standardizing interfaces and
simplifying integrations because they improve accessibility to
systems, services, or components, and are central to modern
service delivery. However, the techniques of successful API-first
integration implementations are not universally understood. The
rapid increase in the number and use of Application Programming
Interfaces (APIs) in software development and technology in
response to the growing need for integration, communication, and
functionality exchange between various software applications,
systems, and services through increased adoption of SaaS and
the rise of microservices development practices, has only raised
the expectations.

Complexity within the Medium to Large Organizations
While APIs provide the flexibility to the organizations to
share systems, services, or components it can also present
unique challenges based on the size of the organization and
compartmentalization of the work divided among many technical
and business groups like

•	 Integration with Legacy Systems: Large organizations may
have many older or legacy systems that weren't designed for
API integration which can present a big roadblock.

•	 Governance and Standardization: Establishing uniform
API standards and governance across various departments
and teams is complex, requiring a balance between control

and flexibility.
•	 Security and Compliance: Ensuring APIs adhere to stringent

security protocols and regulatory compliance, especially when
handling sensitive data, is crucial and complex.

•	 Scalability and Performance Management: As the number
of APIs increases with multiple systems, ensuring that these
API’s perform efficiently and can scale to meet growing
demands becomes challenging.

•	 Cultural Barrier: Shifting to an API-first approach often
requires a significant cultural change within the organization,
which can be difficult to manage.

•	 Interoperability Issues: Ensuring new APIs are compatible
with various existing systems and technologies across the
organization can pose a significant challenge.

Elements of Successful API First Integration Strategy
API Strategy Vs Integration Strategy is a crucial differentiation to
understand while looking to adopt API-First strategy. While an API
strategy is a comprehensive plan that outlines how an organization
will use Application Programming Interfaces (APIs) to enhance
business processes, customer experiences, and partner integrations
by strategically defining the role of APIs in the organization's
overall technology landscape. The Integration is simply process
of linking together diverse computing systems and software
applications, physically or functionally making independently
designed systems work well together to act as a coordinated whole.

As a medium to large enterprise while defining the API-First
strategy, it’s important to understand the patterns of the integrations
and how those are different from each other [2].

Figure 2: Three Patterns of Integration

•	 Point-to-Point Pattern: This is the simplest form of
integration where each system or application is directly
connected to every other system with which it needs to
communicate. While easy to implement for a small number
of connections, it can become complex and unmanageable as
the number of connections grows, often leading to a scenario
known as "spaghetti integration."

•	 Hub-and-Spoke Pattern: In this pattern, a central hub is
used to facilitate communication between different systems
or 'spokes'. Each system connects only to the hub, which
then routes messages to the appropriate destination. This
reduces the complexity of direct point-to-point connections
and simplifies maintenance and scalability. However, the
central hub can become a bottleneck or single point of failure.

•	 Composite Pattern: This pattern introduces a more
sophisticated middleware layer, known as an Enterprise
Service Bus, which standardizes and manages communication
between different systems. The ESB decouples systems and
provides services like message routing, transformation, and
orchestration. This approach offers flexibility, scalability, and

Citation: Nilesh D Kulkarni, Saurav Bansal (2023) Building Enterprise-Wide API-First Strategy for Medium to Large Organizations. Journal of Economics & Management
Research. SRC/JESMR-291. DOI: doi.org/10.47363/JESMR/2022(4)219

J Econ Managem Res, 2023 Volume 4(1): 3-5

the ability to integrate heterogeneous systems more efficiently.

While every integration pattern has the potential to address every
integration need, each of the three basic patterns of integration
(see Figure 2) emphasizes the need for different Best of Breed
(BoB) integration capabilities.

Integration Capabilities Particularly Important for Point-to-Point
Integration
•	 Flexible data provisioning and synchronization (e.g., change

data capture) rules
•	 High-volume, complex data transformation
•	 Data governance support (e.g., access, obsolescence rules)

Integration capabilities particularly important for hub-and-spoke
pattern
•	 Visual process modeling and improved user experience
•	 Stateful, scalable process runtime engine to orchestrate tasks
•	 Large adapter suite (for on-premises applications, SaaS,

mobile, IoT, etc.)

Integration capabilities particularly important for composite
pattern
•	 High productivity services composition
•	 Configurable API gateways (to expose well-managed services)
•	 Automated services definition generation (e.g., Open API

WSDL, OAS/Swagger, WSDL)

Each Integration Capability Addresses Different Integration
Needs
•	 Application Integration Suites (e.g., enterprise service

bus): A general-purpose integration tool to integrate many
applications and systems. Key features of application
integration suites include communication functionality that
supports protocol hopping and reliably moves messages
among endpoints. It also offers: support for fundamental
web API standards, functionality that dynamically binds
consumer and provider endpoints, support for multiple
interaction patterns, message transformation, asynchronous
integration flows, content-based routing and typed messages.

•	 B2B Gateway Software (BGS): For integrating applications
between companies, e.g., exchanging purchase orders from
one company’s procurement system and another’s order
management system. B2B gateway software can provide
reliable, one-time-only communication between endpoints
using managed file transfer and other protocols such as AS2,
and even on-premises application integration in some cases.

•	 Full Life Cycle API Management: Tools to publish, promote
and manage the usage of APIs, frequently in the cloud or
on a scalable, on-premises environment. May incorporate
some basic integration features, e.g., translation. Provides
security when the data used or returned by the API is restricted
or sensitive, and also provide additional features such as
throttling, caching, tracking and analytics. It also includes
API support documentation resources generally known as
developers’ portals.

•	 Integration Platform as a Service (iPaaS): A cloud-
delivered application and data integration solution. iPaaS
provides many of the capabilities addressed by ESBs and
data integration tools, with an emphasis on addressing cloud
services integration use cases, overall ease of use and SaaS-
like delivery. Often used for a combination of data, multistep
process and composite services integration. Typically includes
at least rudimentary API management capabilities.

Building API-First Strategy
An API-first approach toward integration is using APIs to connect
to a system, service or application as well as these APIs are well-
defined and documented, and there are integration technologies
to support the use of APIs to enable integration. The integration
platform is responsible for connecting to cloud and on-premises
applications, events and data sources using a mixture of APIs and
other mechanisms such as native connectors, database connectors
or via message queues.

Being API-first does not mean being API-only. There will be
scenarios where other interface standards may be more appropriate,
such as ODBC/JDBC , FTP , AMQP and MQTT . Based on the
type of organization and level of system complexity a below
guideline can be used while creating an API-First Strategy.

Figure 3: Reference Architecture for API-First Approach

An API gateway is a main component of API management, where it
acts as a composition of the multiple API capabilities by exposing
the underlaying systems securely and consistently. Whether you
choose to create APIs indiscriminately or methodically, tracking
the created APIs and protecting them from insider and outsider
threats will be critical. It is imperative that the APIs created for
internal or external purposes are published to the API gateway of
choice, where necessary authentication and authorization policies
can be applied.

API gateways are not an integration technology, but an enabler
of integration. API gateways meets nonfunctional requirements
like traffic management, load balancing, routing (mapping outer
APIs to inner APIs) and enforcing security policies.

This composite service should not be implemented within the API
gateway, as this will harm the performance of the API gateway
and overload it with integration logic, rather it should be at the
boundary of the integration services layer to eliminate future
performance challenges.

Published APIs should also be added to an API catalog — and
where they are intended for reuse, they should be published in an
API portal and supplemented with standardized documentation
to ensure your APIs are discoverable. In addition, you should
collaborate with your security teams to ensure you discover your
shadow APIs before attackers do. Conduct penetration testing on
your APIs regularly, and implement reusable security policies to
make your APIs bulletproof from a security standpoint.

Follow below checklist while developing the API standards across
the enterprise to ensure API-First is governed
•	 Develop API Style guide to ensure technical consistency of

APIs

Citation: Nilesh D Kulkarni, Saurav Bansal (2023) Building Enterprise-Wide API-First Strategy for Medium to Large Organizations. Journal of Economics & Management
Research. SRC/JESMR-291. DOI: doi.org/10.47363/JESMR/2022(4)219

J Econ Managem Res, 2023 Volume 4(1): 4-5

•	 Establish standard and reusable security and runtime policies
•	 Build a community of practice in line with API best practices.
•	 Develop documentation standards ensuring appropriate

documentation
•	 Centralize API gateway portal so that APIs can also be

consumed in a consistent way

Stay away from too much reuse: Incorporating additional APIs into
the integration workflow, apparently for reuse, can significantly
extend the integration implementation timeline. This approach
adds undue complexity and heightened latency. An API-first
perspective entails prioritizing the API users' or consumer of API
needs. If the sole user is an integration platform, then generating
new APIs may be redundant.

Consider reuse as a secondary advantage of API-first integration,
rather than the primary goal. When dealing with APIs and
integrations, it's important to avoid overemphasizing reuse as
the sole measure of success. Over-focusing on reuse can lead to
counterproductive practices, like compelling developers to utilize
APIs that don't align with their specific requirements.

Measuring Success of API-First Strategy Using Business KPIs
While defining the API-First strategy one must derive meaningful
business KPIs from the business goals that the organization is
currently trying to achieve. For example, typical commercial
organizations define their goals in terms of increasing revenue,
reducing costs, productivity increase and happy customers. The
purpose of such metrics is not to provide organizational or financial
reporting, but to define, quantify and create a baseline of values
that technology leaders can use to generate awareness of the
success of their APIs, platforms and strategies. This can also
be used to track business value contribution and trending over
reporting cycles. It is, however, important to avoid claiming direct
credit for all (or part of) any revenue. Instead, use these metrics
to create awareness and trending to gain and retain executive and
business community backing, Some of the KPIs that can be used
to measure the success [3].

Table 1: Measuring API Success with KPIs
Business Objectives KPI to Measure API Strategy

Success
Increase revenue New revenue generated though

API usage
Increase revenue New revenue generated though

API usage
Acquire new customers Number of new customers

joined partner API network
Productivity Gain Cost reduction through

automation enabled by APIs
Reduce capital spend Avg. time to enable new

capability using API
Reduce operational cost Avg. number of defects closed/

time
Improve security posture Count of API related breaches

The next step in the process is to identify which APIs to track
against the identified metrics. Identifying the set of APIs designed
to deliver the best business outcomes is key to measuring and
tracking business value. It is crucial to apply the right metrics to
the right set of APIs and to set the right expectations of desired
outcomes. Organization may have many APIs deployed and
contributing to various aspects of your business. These could be

registered or unregistered APIs in one or more API catalogues.
Typical API types include internal APIs, private or B2B APIs used
between organizations, public or partner network APIs.

Few Important Considerations to become API-First
Organization
Consistency and Discoverability of APIs: Make sure that data
about certain business entities (e.g., customers, products, suppliers,
employees, patients, citizens and assets) scattered across multiple
databases and applications is in sync (e.g., the address of customer
XYZ is the same across your CRM, ERP and billing applications).
Create a federated API platform team in charge of API strategy,
defining governance, operating the organization’s API management
platform, and the formation of a community of practice to improve
the maturity and consistency of API designs [4].

API Security Considerations: API security can be divided
into two broad aspects: API threat protection and API access
control. API threat protection means detecting and blocking
attacks on APIs, while API access control means controlling
which applications and users can access APIs. To secure APIs,
it is important to be aware of the ways in which your APIs can
be breached like

•	 Unsecured API keys in repositories and storage. API keys or
other keys, such as SSH keys or SSL/TLS private keys , may
be discovered in cloud-based storage or in code repositories
such as Github , which are left open to the public rather than
being access controlled.

•	 Hardcoded API keys in applications. API keys or other
credentials may be hardcoded in web and mobile applications
and subject to decompiling attacks.

•	 API logic flaws, APIs may have bugs or other logic flaws
which can be exploited

•	 Sniffed API calls. API traffic may be sniffed through a man-
in-the-middle (MITM) approach, uncovering API keys or
discovering unsecured APIs

A Sample Use Case Explaining the API-First Approach
The API-First approach, as highlighted in the Figure 4, is a
strategic method applied within a complex organization which
has many discrete ERP ecosystem, multiple data lakes, few third
parties and multiple customers with heterogeneous information
stored within various systems. As illustrated, there are many
customers to the API ecosystem.

A Partner Customer (B2B)
•	 Need to place a purchase order for multiple brands associated

with on or many ERP systems
•	 Need status of the order
•	 Request a replenishment of the partially filled order
•	 Get more accurate shipping information
•	 Need to inform about a broken package delivered to their

warehouse

A Supplier
•	 Need to know the inventory of the raw material
•	 Request PO against the depleting inventory
•	 Understand the selling pattern, to plan for the internal

production

A B2C Customer
•	 Place an order on a portal
•	 Receive shipment notification

Citation: Nilesh D Kulkarni, Saurav Bansal (2023) Building Enterprise-Wide API-First Strategy for Medium to Large Organizations. Journal of Economics & Management
Research. SRC/JESMR-291. DOI: doi.org/10.47363/JESMR/2022(4)219

J Econ Managem Res, 2023 Volume 4(1): 5-5

Copyright: ©2023 Nilesh D Kulkarni. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

•	 Make online Payment
•	 Receive refunds or add parts to the previous orders and so on.

Figure 4: A Real Life Use Case Example

The API Gateway layer facilitates the capability exposure to the
specific customer of the API based on the purpose, and allow the
limited reusability of the APIs with security. This layer also has
a microservices based construct to ensure every API service is
modular and has a singular purpose, the feature composition is
done within API Gateway layer to ensure separation of concern and
reduced complexity from orchestration standpoint. The Integration
layer is responsible to connect into each capability within the
underlaying ERP, data systems or third-party APIs to abstract the
complexity of the ERPs. It is also making the interface independent
of the underlaying system, creating a uniform interface into the on-
prem or cloud systems without exposing any system complexities.

The four guiding principles while designing the API-Frist
architecture are
•	 Microservices: Microservices architecture is a design

approach where an application is structured as a collection
of loosely coupled, independently deployable services, each
implementing specific business capabilities. Unlike monolithic
architectures, microservices are small, modular, and can be
developed, deployed, and scaled independently. This allows
for agile development practices, easier maintenance, and
rapid scaling to meet specific demands of different services
within an application.

•	 API-First: API-First Architecture is an approach where APIs
are treated as "first-class citizens" in the software development
process. This means that the APIs are designed up front,
before any code for the application logic is written, with a
strong focus on the end-user's needs and the applications
that will consume the API. This approach ensures that the
API provides a well-defined contract, which can be used to
guide the development of the application services that will
implement it. It promotes a more decoupled, scalable, and
flexible architecture, where the services can be consumed
by various clients across different platforms, such as web,
mobile, or third-party applications.

•	 Cloud Native: Cloud Native Architecture is a method
of designing and running applications that fully exploit
the advantages of cloud computing delivery models. It's
characterized by containerization, dynamic management,
microservices, and continuous delivery, enabling organizations
to build and scale applications in modern, dynamic
environments such as public, private, and hybrid clouds.
Principles include automation, scalability, resilience, agility,
and the use of DevOps practices. This approach emphasizes

the use of services that are loosely coupled, managed by
orchestrators, and continuously updated, allowing for flexible
and resilient systems

•	 Headless: Headless architecture refers to a separation between
the backend logic of an application and the frontend user
interface. Essentially, the 'head' (front end, such as a website
or app interface) is decoupled from the 'body' (backend, like
databases and server-side processes). This allows developers
to build and make changes to the frontend without affecting
the backend operations, and vice versa.

Conclusion
APIs are a good option for standardizing interfaces and simplifying
integrations because they improve accessibility to systems,
services, or components, and are central to modern service
delivery, but API-First approach ensure that the design approach
is at the core of the enterprise application's architecture. While
APIs provide the flexibility to the organizations to share systems,
services, or components it can also present unique challenges
based on the size of the organization and compartmentalization
of the work divided among many technical and business groups

As a medium to large enterprise while defining the API-First
strategy, the three patterns of integration need to be understood
to identify where those patterns can be applied based on the
specific use case.

A reference architecture outlining the components within API
Management Layer and Integration layer and separation of
concerns for medium to large organizations. While developing API
strategy it is important to follow a checklist to ensure centralized
governance.

Measuring the success of the strategy and impact of the strategy
on business with the help of KPIs is very important.

At the end these elements are tied together, showcasing their
relevance in a real-world scenario and underscoring the critical
role of security and data consistency in formulating an effective
API-First strategy.

References
1.	 What is an API? Available: https://www.postman.com/what-

is-an-api/.
2.	 Benoit Lheureux, Keith Guttridge (2023) Choose the Best

Integration Tool for Your Needs Based on the Three Basic
Patterns of Integration. https://tech-prospect.com/technology/
choose-the-best-integration-tool-for-your-needs-based-on-
the-three-basic-patterns-of-integration-w/#.

3.	 Shameen Pillai (2023) How to Use KPIs to Measure the
Business Value of APIs,Gartner. Available: https://www.
gartner.com/en/documents/3980238.

4.	 Andrew Comes, Mark O'Neill, Shameen Pillai (2022) How
to Organize Your API Development to Ensure Consistency
and Quality. Available: https://www.gartner.com/en/
documents/4015038.

