
J Arti Inte & Cloud Comp, 2022 Volume 1(4): 1-5

Review Article Open Access

Beyond Coding: A Comprehensive Study of Low-Code, No-Code
and Traditional Automation

Independent Researcher, Avon, Indiana, USA

Rohit Khankhoje

Journal of Artificial Intelligence &
Cloud Computing

*Corresponding author
Rohit Khankhoje, Independent Researcher, Avon, Indiana, USA.

Received: October 03, 2022; Accepted: October 11, 2022; Published: October 22, 2022

Keywords: Test Automation, Low-Code Automation, No-Code
Automation, Traditional Test Automation

Introduction
The progression of automation in the realm of software testing
has brought about a transformative expedition that has had a
profound impact on the effectiveness and dependability of software
development procedures. At the outset, testing predominantly
relied on manual efforts, which were characterized by practices
that consumed a significant amount of time and were prone to
errors. However, the advent of automation tools in the latter part
of the 20th century marked a notable shift, enabling testers to
automate repetitive tasks and execute test scripts.

During the initial stages of automation, scripted testing was
introduced, wherein testers possessing programming skills would
meticulously create scripts that imitated user interactions. As the
necessity for scalability and maintainability grew, methodologies
such as keyword-driven and data-driven testing emerged,
abstracting test scripts from the underlying code.

The implementation of test frameworks, such as J Unit and N
Unit, introduced a structured approach to organizing and executing
automated tests. Additionally, Behavior-Driven Development
(BDD) methodologies like Cucumber further enhanced
collaboration among teams by using natural language to express
tests [1]. With the advent of DevOps practices, automation became
an integral part of continuous integration and continuous testing
pipelines. Recent advancements in artificial intelligence and
machine learning have introduced intelligent testing solutions that

are capable of independently generating and executing test cases.

In the most recent phase, there has been an emergence of low-
code and no-code testing solutions, which empower individuals
with limited coding expertise to actively participate in the testing
process. This ongoing evolution is a testament to the commitment
towards efficiency, collaboration, and adaptability in the ever-
changing landscape of software development.

Understanding Low-Code, No-Code and Traditional
Automation
Traditional Automation
Traditional automation in software testing refers to the
conventional practice of utilizing scripts or code, commonly
written in programming languages such as Java, Python, or C#
to mechanize test scenarios. This approach entails the creation
of comprehensive scripts that interact with the application being
tested, simulating user actions and validating anticipated outcomes
[1]. The utilization of traditional automation necessitates a solid
foundation in programming and scripting languages, rendering
it suitable for skilled developers and testers. Despite offering
considerable flexibility and customization, this method may
require a greater investment of time and resources in comparison
to emerging methodologies like low-code or no-code automation.

Low-Code Automation
Low-Code Automation is a testing methodology that optimizes the
process of test creation by minimizing the need for manual coding.
By utilizing visual interfaces, pre-designed components, and drag-
and-drop functionalities, it enables testers to design and execute

ISSN: 2754-6659

ABSTRACT
The domain of software testing has undergone a transformative shift with the advent of automation technologies, particularly Low-Code and No-Code
solutions in addition to conventional coding methods. This paper presents a comprehensive exploration of these three paradigms, delving into their
strengths, weaknesses and applications in contemporary testing practices.

We delve into the intricacies of Low-Code and No-Code automation, examining their potential to democratize testing beyond the traditional boundaries
of coding. Through a comprehensive comparison of these approaches, our goal is to provide guidance to practitioners and decision-makers in selecting the
most suitable strategy for their testing requirements, thereby ushering in a new era of efficiency and adaptability in software testing. Accompany us on a
journey that goes beyond coding as we unravel the subtleties of Low-Code, No-Code and Traditional Automation in this innovative study.

Citation: Rohit Khankhoje (2022) Beyond Coding: A Comprehensive Study of Low-Code, No-Code and Traditional Automation. Journal of Artificial Intelligence &
Cloud Computing. SRC/JAICC-160. DOI: doi.org/10.47363/JAICC/2022(1)148

J Arti Inte & Cloud Comp, 2022 Volume 1(4): 2-5

tests with reduced reliance on conventional coding skills [2]. This approach significantly expedites the test development lifecycle,
making it accessible to a wider range of professionals, including those without extensive coding expertise. Low-Code Automation
enhances efficiency and collaboration by democratizing the testing process, enabling teams to create and maintain automated tests
more swiftly and effectively compared to traditional coding-centric approaches [3].

No-Code Automation
No-Code Automation presents a ground-breaking methodology for testing that eliminates the need for manual coding entirely. Through
the utilization of intuitive visual interfaces, drag-and-drop components, and pre-configured elements, testers and non-technical users
alike are able to construct automated test scenarios. The primary focus of No-Code Automation lies in its emphasis on simplicity and
accessibility, enabling a wider range of professionals to actively engage in the test automation process without possessing traditional
coding skills. This democratization of testing not only enhances collaboration, but also expedites the test development lifecycle by
facilitating the swift and efficient creation of automated tests, thereby rendering the entire process more comprehensive and user-friendly.

Figure 1: Flexibility vs Development Speed

Evaluation of Development Process
The assessment of the development procedure in low-code automation, no-code automation and traditional automation necessitates the
evaluation of diverse elements predicated on the distinctive attributes of each methodology. Presented below is an all-encompassing
analysis.

Table 1: Comparison of Evaluation of Development
Criteria Low-Code Automation No-Code Automation Traditional Automation
Rapid Development Facilitates expedited application

development through the
utilization of visual interfaces and
pre-built components.

Experiences an
exceptionally rapid pace, as
it necessitates minimal or no
coding.

Typically characterized by a
slower pace due to the reliance on
manual coding and scripting.

Ease of Use Designed to be easily navigable,
with a primary focus on
empowering users with diverse
technical backgrounds.

Demonstrates an
extraordinary level of user-
friendliness, targeting individuals
with limited to no technical
background.

Demands a higher level of
technical proficiency, rendering
it less accessible to individuals
lacking developer expertise.

Flexibility and Customization Offers a range of customization
options while maintaining
a balance between visual
development and the integration
of personalized code.

Possesses limited flexibility
in terms of customization,
rendering it more suitable for
straightforward applications with
standard functionalities.

Exhibits a high degree of
configurability, affording
complete command over
application attributes and
functionalities.

Collaboration Places significant emphasis on
collaborative efforts through
the utilization of visual
models, thereby facilitating the
participation of various
stakeholders.

Facilitates collaboration by
enabling non-developers to
actively contribute to the
development process.

Collaboration may be
constrained to proficient
developers and testers
exclusively.

Scalability Generally capable of scaling to
accommodate a variety of
applications, although potential
limitations may arise when
dealing with highly intricate or
large-scale projects.

Suited for simple applications;
however, it may encounter
challenges when confronted with
complex or large-scale projects.

Highly adaptable, suitable for
both rudimentary and intricate
applications.

Citation: Rohit Khankhoje (2022) Beyond Coding: A Comprehensive Study of Low-Code, No-Code and Traditional Automation. Journal of Artificial Intelligence &
Cloud Computing. SRC/JAICC-160. DOI: doi.org/10.47363/JAICC/2022(1)148

J Arti Inte & Cloud Comp, 2022 Volume 1(4): 3-5

Integration Capabilities Provides integration features,
although these may be
comparatively restricted in
comparison to traditional
approaches.

Restricted in comparison to low-
code or traditional approaches.

Offers extensive integration
capabilities encompassing diverse
tools, systems, and technologies.

Quality and Testing Offers testing tools, although
the extent and depth of these
tools may vary in comparison to
traditional methods.

Testing capabilities are often
restricted, offering fewer options
for in-depth testing when
compared to low-code or
traditional methods.

Provides comprehensive testing
alternatives, enabling meticulous
examination and quality
assurance.

Support and Maintenance Vendor support is of utmost
importance, as updates and
maintenance are typically
managed by the low-code
platform provider.

Similar to low-code, support
and maintenance are typically
handled by the platform provider.

Support and maintenance
obligations rest with the
development and testing teams.

Compliance and Security Adheres to standards,
although the scope may be
narrower when
compared to low-code or
traditional approaches.

Adheres to standards,
although the scope may be
narrower when
compared to low-code or
traditional approaches.

Can be tailored to
accommodate specific
compliance and security
requisites.

Can prove to be cost-effective in
terms of development speed and
ease of use, although licensing
fees should be taken into
consideration.

Can prove to be cost-effective in
terms of development speed and
ease of use, although licensing
fees should be taken into
consideration.

Generally cost-effective for
simple applications; it may result
in cost savings due to reduced
development time.

May entail elevated initial
development costs, yet proffers
enduring benefits in terms of
control and scalability.

The choice between these approaches hinges upon project
requirements, team proficiency and the desired equilibrium
between expedition, control, and simplicity. Each approach boasts
distinctive merits and demerits, underscoring the importance
of aligning the selection with the project's precise needs and
objectives.

Flexibility and Customization
Flexibility and customization vary among low-code automation, no-
code automation, and traditional automation, reflecting the trade-offs
between ease of use and control. Let us examine each approach:

Figure 2: Flexibility and Customization

Low-Code Automation
Flexibility
Visual Modeling
Utilizes visual interfaces to construct applications, facilitating the
modeling of processes for users.

Pre-Built Components
Often includes a repository of pre-built components that users
can utilize for common functionalities.

Customization
Balanced Customization
Strikes a balance between the development using visual tools and

the ability to incorporate custom code.

Extensibility
Enables the enhancement of functionality through the integration of
custom code snippets, allowing for a certain level of customization.

No-Code Automation
Flexibility
Restricted Complexity
Designed for uncomplicated applications with conventional
functionalities, constricting the intricacy of the development
process.

Visual Development
Exclusively employs visual interfaces, streamlining the
development procedure while imposing constraints on certain
attributes.

Customization
Minimal Customization
Provides minimal or no coding options, curbing the extent of
customization.

Standardized Features
Frequently relies on standardized features and templates, limiting
the capability to devise highly personalized solutions.

Traditional Automation
Flexibility
Utmost Command Affords
Utmost command over the developmental process, enabling the
realization of intricate designs and the management of complex
functionalities.

Boundless Complexity
Possesses the capacity to handle a wide range of complexities,
rendering it suitable for diverse and intricate applications.

Citation: Rohit Khankhoje (2022) Beyond Coding: A Comprehensive Study of Low-Code, No-Code and Traditional Automation. Journal of Artificial Intelligence &
Cloud Computing. SRC/JAICC-160. DOI: doi.org/10.47363/JAICC/2022(1)148

J Arti Inte & Cloud Comp, 2022 Volume 1(4): 4-5

Customization
Vast Customization
Facilitates vast customization, granting developers the ability to
personalize every facet of the application.

Coding Autonomy
Permits the utilization of diverse programming languages and
coding methodologies, bestowing unparalleled customization
possibilities.

Maintenance and Scalability
Maintenance and scalability considerations differ among low-code
automation, no-code automation, and traditional automation. We
shall delve into these aspects for each approach.

Figure 3: Maintenance and Scalability

Low-Code Automation
Maintenance
Visual Abstraction
Maintenance is simplified through the utilization of visual
modeling, as modifications can be executed via the visual interface.

Modular Components
The utilization of modular components enables more convenient
updates and maintenance of individual segments within an
application.

Scalability
Limitation on Complexity
While low-code is suitable for expeditious development, the
presence of intricate and highly scalable applications may present
challenges.

Performance Considerations
The process of scaling may necessitate additional considerations
to ensure optimal performance.

No-Code Automation
Maintenance
Minimal Maintenance
No-code platforms strive to minimize maintenance endeavors by
simplifying the development process.

Vendor Updates
Maintenance tasks often depend on updates provided by the no-
code platform vendor.

Scalability
Simplicity Limits Scaling
No-code is particularly advantageous for uncomplicated
applications, although scalability may be limited for more intricate
projects.

Standardized Scaling
Scaling is frequently facilitated through standardized features,
which impose restrictions on customization for specific scalability
requirements.

Traditional Automation
Maintenance
Codebase Control
Developers possess complete control over the codebase, thereby
enabling precise maintenance and updates.

Version Control
Traditional automation benefits from the utilization of well-
established version control systems, which ensure organized
maintenance.

Scalability
Unrestricted Scalability
Traditional automation offers unrestricted scalability, rendering
it suitable for substantial and intricate applications.

Customizable Scaling
Developers can implement customized scaling solutions tailored
to meet specific project needs.

Time and Cost efficiency
Time and cost efficiency considerations vary among low-code
automation, no-code automation, and traditional automation. Let
us delve into these elements for each approach

Figure 4: Time and Cost Efficiency

Low-Code Automation
Time Efficiency
Expeditious Development
Low-code platforms expedite application development through
visual modeling and pre-built components.

Reduced Coding
By emphasizing visual development, coding efforts are minimized,
thereby accelerating the development lifecycle.

Cost Efficiency
Diminished Development Costs
The visual approach and the reusability of components contribute
to lower development costs.
Reduced Training Time
Shorter training periods for developers lead to cost savings.

No-Code Automation
Time Efficiency
Swift Application Development
No-code platforms aim to achieve simplicity, allowing for the

Citation: Rohit Khankhoje (2022) Beyond Coding: A Comprehensive Study of Low-Code, No-Code and Traditional Automation. Journal of Artificial Intelligence &
Cloud Computing. SRC/JAICC-160. DOI: doi.org/10.47363/JAICC/2022(1)148

J Arti Inte & Cloud Comp, 2022 Volume 1(4): 5-5

Copyright: ©2022 Rohit Khankhoje. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

swift development of basic applications.

User-Friendly Interface
 Non-technical users can participate in the development process,
reducing reliance on dedicated developers.

Cost Efficiency
Minimal Development Costs
No-code platforms lower development costs as they require less
coding expertise.

Reduced Dependency on Developers
Business users can actively engage in application development,
reducing the need for dedicated developers.

Traditional Automation
Time Efficiency
Precise Development
Traditional automation allows for precise coding and customization,
which can be time-consuming.

Accelerated Execution
Once developed, traditional automation scripts can execute rapidly,
thereby enhancing overall testing speed.

Cost Efficiency
Investment in Skilled Developers
Traditional automation may necessitate a higher initial investment
in skilled developers.

Long-Term Cost Benefits
While initial costs may be higher, long-term benefits in terms of
customization and scalability can lead to cost efficiency.

Future Trends
The future of automation in software development is on the verge of
experiencing remarkable changes in the realm of low-code, no-code,
and traditional methodologies. The trajectory of low-code automation
is characterized by an emphasis on improved customization and
scalability [4]. Future trends suggest the incorporation of artificial
intelligence (AI)-driven recommendations and predictive modeling
within low-code platforms, enabling developers to anticipate and
implement functionalities with unparalleled efficiency. Furthermore,
the integration of low-code with emerging technologies such
as blockchain and edge computing is expected, unlocking new
possibilities in application development.

The future of no-code automation envisions a broader accessibility
and democratization of software development. With a focus on
user-centric design, no-code platforms are likely to integrate more
intuitive drag-and-drop interfaces and natural language processing
(NLP) capabilities. As machine learning algorithms become more
sophisticated, no-code platforms will provide users with intelligent
suggestions, automating complex decision-making processes and
expanding the range of applications that can be developed without
traditional coding.

In the realm of traditional automation, the future lies in the
integration of artificial intelligence (AI) and machine learning
(ML) [5]. Testing frameworks will evolve to incorporate advanced
analytics, facilitating intelligent test case generation and adaptive
testing strategies. Scriptless testing tools will gain prominence,
reducing the barriers for non-programmers and promoting
collaboration between testers and domain experts.

Conclusion
In conclusion, our comprehensive study of Low-Code, No-Code,
and Traditional Automation underscores the dynamic landscape of
software development. Each approach brings unique strengths to the
table, addressing diverse needs and preferences within the industry.

Low-Code Automation emerges as a powerhouse for rapid
application development, offering a balance between speed and
customization. Its visual development environment empowers both
developers and business users, accelerating the application delivery
process. No-Code Automation heralds a new era of accessibility,
democratizing software development. With its intuitive interfaces
and minimal coding requirements, it enables a broader audience
to actively participate in application creation. This user-friendly
approach fosters collaboration between technical and non-
technical stakeholders.

Traditional Automation remains a stalwart in the industry, evolving
with advancements such as AI and ML integration. Its robustness
and flexibility make it indispensable for complex projects, ensuring
precise control over every aspect of the development lifecycle.

As organizations contemplate the adoption of these automation
paradigms, it is imperative to align choices with specific project
requirements and team skill sets. The future promises even
greater synergy, with trends like AI-driven suggestions, predictive
modeling, and ethical considerations becoming pivotal.

In this era of technological evolution, the choice between Low-
Code, No-Code, and Traditional Automation is not binary but rather
a strategic decision based on the unique demands of each project.
By understanding the nuances of these approaches, organizations
can navigate the ever-changing landscape of software development
with agility and innovation. The key lies in leveraging the strengths
of each paradigm to drive efficient, collaborative, and ethical
software development practices.

References
1.	 Gupta S, Verbruggen G, Singh M, Sumit G, Vu L (2023)

Personalized action suggestions in low-code automation
platforms. arXiv https://arxiv.org/abs/2305.10530.

2.	 Waszkowski R (2021) Low-code Development Platform
for Business Process Automation: Aurea BPM. AHFE
International 36: 178-184.

3.	 Benac R, Mohd T (2021) Recent Trends in Software
Development: Low-Code Solutions. Proceedings of the
Future Technologies Conference 3: 525-533.

4.	 Khorram F, Mottu JM, Sunyé G (2020) Challenges &
opportunities in low-code testing. MODELS '20: Proceedings
of the 23rd ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems: Companion
Proceedings 1-10.

5.	 Hili N, Oliveira R (2022) A light-weight low-code platform for
back-end automation. Proceedings of the 25th International
Conference on Model Driven Engineering Languages and
Systems: Companion Proceedings 837-846.

