
J Eng App Sci Technol, 2023 Volume 5(1): 1-2

Research Article Open Access

Authentication and Authorization in Web Applications

The University of Texas at Dallas, Texas, USA

Krutika Patil

Journal of Engineering and Applied
Sciences Technology

ISSN: 2634 - 8853

*Corresponding author
Krutika Patil, The University of Texas at Dallas, Texas, USA.

Received: December 19, 2022; Accepted: January 24, 2023; Published: February 26, 2023

ABSTRACT
This article navigates through the landscape of OAuth 2.0, a pivotal authentication and authorization protocol widely adopted in web applications. By
demystifying the core components – namely the Resource Owner, Client, Resource Server, Authorization Server, Access Token, and Refresh Token –
the article sheds light on their distinct roles and interplay in safeguarding user credentials while permitting authorized access to protected resources.
Furthermore, it delves into the various authorization flows, elucidating mechanisms that guide secure interactions between users, applications, and
resource servers. With an adjunct focus on security considerations and challenges, the article provides a holistic view of implementing OAuth 2.0. It
aims to give developers and IT professionals comprehensive insights into effectively leveraging this protocol while mitigating potential vulnerabilities.
A balanced perspective juxtaposes the protocol's robustness and complexity, striving to offer a thorough understanding of employing OAuth 2.0 in
diverse web application scenarios.

Keywords: NextJs, React, Front-End Web Development,
JavaScript Frameworks, Server-Side Rendering, Pre-Rendering,
Search Engine Optimization (SSO), Production-Ready React
Framework

Introduction
OAuth 2.0, the second iteration of the OAuth protocol, is a
standard for token-based authentication and authorization on the
Internet. Web applications use OAuth 2.0 to grant access to user
data without exposing user credentials. Let’s delve deeper into
this topic, exploring its functionalities, flows, and utility in web
applications.

Exploring OAUTH2.0 Components in Detail
1. Resource Owner
Overview: The resource owner is typically the user with access to
specific protected resources, which they can grant or deny access
to through a client application.
Key Points:
Granting Permission: Resource owners can grant permission
to access their data.
Authentication: They undergo an authentication process usually
involving usernames and passwords.

2. Client
Overview: The client is an application requesting access to the
resource owner's protected resources. It requires the resource
owner's authentication and authorization to access such data.
Key Points:
Client Registration: Typically, clients need to be registered with
the authorization server, obtaining client ID and client secret.
Redirect URI: The client must have a registered redirect URI to
receive responses from the authorization server.

3. Resource Server
Overview: The resource server hosts the protected resources and
can accept and respond to requests using access tokens.
Key Points:
Token Validation: It verifies the validity of access tokens provided
by clients.
Resource Retrieval: Upon successful validation, it allows access
to requested resources.

4. Authorization Server
Overview: The authorization server is vital for the client to
obtain authorization from the resource owner and exchange the
authorization grant for an access token.
Key Points:
User Authentication: It is responsible for authenticating the
resource owner’s identity.
Token Issuance: It issues access tokens to the client after
successfully authenticating the resource owner and validating
their authorization.

5. Access Token
Overview: The access token is a string representing the
authorization granted to the client, which is used to access
protected resources.
Key Points:
Bearer Token: Usually utilized as a bearer token, wherein
whoever bears the token can access the resources.
Expiration: They generally have limited lifetimes and expire
after a certain period.

6. Refresh Token
Overview: Refresh tokens are used to obtain new access tokens,
enabling the client to access protected resources without requiring
the resource owner to log in again.

Citation: Krutika Patil (2023) Authentication and Authorization in Web Applications. Journal of Engineering and Applied Sciences Technology. SRC/JEAST-263.
DOI: doi.org/10.47363/JEAST/2023(5)186

 Volume 5(1): 2-2J Eng App Sci Technol, 2023

Copyright: ©2023 Krutika Patil. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Key Points:
Long-lived: Typically, these tokens have a longer lifespan than
access tokens.
New Access Token: Used to request new access tokens, enhancing
security by limiting the lifespan of access tokens.

Diving Deeper: Security and Tokens
Access Tokens are vital for ensuring a client application can access
protected resources on a resource server. The token represents the
authorization of a specific application to access particular parts
of a user's data.

Refresh Tokens play a critical role in enhancing the security and
user experience. Since access tokens have limited lifetimes, refresh
tokens permit acquiring new access tokens without resource
owners having to authenticate again.

Tokens and Scopes
The scope in OAuth 2.0 indicates the access level that the
application requests from the resource owner. It dictates what
the client application can and cannot do with the access token.
For instance, a client might request access to read a user's profile
data and write to their message inbox. The scope of the access
token defines these different types of access.

Security Considerations
1. SSL/TLS
• Ensuring that all transactions are encrypted and securing the

transmission channel.
2 Token Security
• We are using short-lived access tokens and long-lived refresh

tokens.
• We are storing tokens securely.
3 Redirection URI Verification
• Make sure that redirection URIs are pre-registered and

verified.
4 Client Authentication
• Ensuring that client credentials are stored securely and

transmitted securely.
5 Scope Limitation
• Defining and adhering to the restricted scope of access.
• Challenges and Criticisms
• Complexity: For some developers, OAuth 2.0 is considered

complex and difficult to implement securely.
• Inconsistency: The flexibility of OAuth 2.0 allows for varied

implementations, sometimes leading to inconsistencies.
• Security: Though providing robust security, it is also prone

to misconfigurations that could compromise security.

Conclusion
OAuth 2.0 remains a cornerstone in authorization in web
applications, allowing third-party access without exposing
credentials. Understanding its intricate flows and ensuring
meticulous implementation can leverage its capabilities while
safeguarding against potential vulnerabilities [1-12].

References
1. Krutika Patil, Sanath Dhananjayamurty Javagal (2022) React

state management and side-effects – A Review of Hooks.
IRJET Journal 9: 1-5.

2. Krutika Patil (2022) Redux State Management System - A
Comprehensive Review. International Journal of Trend in
Scientific Research and Development (ijtsrd) 6: 1021-1027.

3. Hardt D (2012) The OAuth 2.0 Authorization Framework.
RFC 6749, RFC Editor

 https://www.rfc-editor.org/rfc/rfc6749.html.
4. Lodderstedt T, Richer J, Hunt P (2013) OAuth 2.0 Threat

Model and Security Considerations. RFC 6819, RFC Editor
https://www.rfc-editor.org/rfc/rfc6819.

5. Sakimura N, Bradley J, Jones M, de Medeiros B, Mortimore
C (2014) OpenID Connect Core 1.0. OpenID Foundation
https://openid.net/specs/openid-connect-core-1_0.html.

6. Denniss W, Bradley J (2017) OAuth 2.0 for Native Apps. RFC
8252, RFC Editor https://www.rfc-editor.org/rfc/rfc8252.
html.

7. Parecki A (2017) OAuth 2.0 Simplified. aaronparecki.com
https://www.oauth.com/.

8. Richer J (2016) OAuth 2 in Action. Manning Publications
 https://www.manning.com/books/oauth-2-in-action.
9. Klabnik S, Katz Y (2018) OAuth 2.0 and OpenID Connect.

In Designing Hypermedia APIs https://hypermedia.design/.
10. Zeller W, Felten E W (2015) Cross-Site Request Forgeries:

Exploitation and Prevention. Princeton University https://
www.cs.princeton.edu/~wzeller/.

11. Lakshmi Narasimman (2022) OAuth 2.0: A Comprehensive
Guide. Learning Resources

 https://narasimmantech.com/oauth-2-a-comprehensive-
guide/.

12. Using OAuth2 (2020) Nuxeo Documentation. https://doc.
nuxeo.com/nxdoc/60/using-oauth2/.

