
J Arti Inte & Cloud Comp, 2022

Open Access

Journal of Artificial Intelligence &
Cloud Computing

ISSN: 2754-6659

Volume 1(4): 1-4

Review Article

Application of AI and ML in the Field of DevSecOps

1Asurion Insurance, VA, USA

2Visa, WA, USA

Khirod Chandra Panda1* and Shobhit Agrawal2

*Corresponding author
Khirod Chandra Panda, Asurion Insurance, VA, USA.

Received: November 15, 2022; Accepted: November 22, 2022; Published: November 30, 2022

Keywords: DevOps, DevSecOps, IaC, SAST, DAST, LOMOS,
Machine Learning, Natural Language Processing, Self-Supervised
Learning

Introduction
 DevSecOps stands for Development, Security and Operations. It’s
the extension of DevOps practices where each team has various
roles and responsibilities of software groups when they develop
the applications. DevSecOps is the practice of integrating security
testing at each phase of the application development process. It
covers tools and procedures that motivate collaboration among
developers, operation groups, and security specialists to develop
efficient and secure software. It provides the cultural transformation
that contributes to security with the shared responsibility for
everyone developing the software. In the dynamic realm of
technology, the fusion of Artificial Intelligence (AI) and Machine
Learning (ML) with DevSecOps practices stands out as a pivotal
catalyst for bolstering security, efficiency, and innovation in
software development and deployment processes. This document
explores effective strategies and optimal practices for maximizing
the capabilities of AI/ML within the DevSecOps framework.

Commencing with an overview of DevSecOps principles and
the integral role of AI/ML, the document delves into specific
tactics such as automated threat detection, predictive analytics
for vulnerability management, and intelligent automation for
continuous integration and deployment. Furthermore, it discusses
key challenges and considerations in integrating AI/ML into
DevSecOps, such as data privacy and ethical implications. Through
illuminating case studies and real-world illustrations, the document
showcases how organizations can leverage AI/ML technologies
to streamline their DevSecOps pipelines, mitigate security risks,
and cultivate a culture of ongoing enhancement. By embracing
these strategies and adhering to best practices, organizations can
harness the full potential of AI/ML to propel innovation, fortify
resilience, and enhance agility in their DevSecOps endeavors.
DevOps methodology in software engineering aims to automate
operations related to development, testing, continuous integration
and deployment in alignment with business goals and other aims
of the involved stakeholders and organizations [1,2].

In this context, many novel methods, concepts and techniques
have emerged, striving to aid the automation of the underlying
activities. One of corner stones is the introduction of Infrastructure
as Code (IaC) that treats deployment, configuration, and update

ABSTRACT
Security is a paramount concern in DevOps. The adoption of Infrastructure as Code (IaC) has increased the potential impact of even minor flaws, particularly
in critical domains like healthcare and maritime applications. Existing solutions typically focus on either Static Application Security Testing (SAST) or
run-time behavior analysis. This paper introduces the IaC Scan Runner, an open-source tool developed in Python for inspecting various IaC languages
during application design, and LOMOS, a run-time anomaly detection tool. Both tools work together to enhance the security of DevOps processes. In
today’s rapidly evolving technological landscape, the vulnerability of infrastructure and applications is growing due to a combination of factors. Attackers
are becoming more sophisticated, leveraging improved intelligence to exploit weaknesses. At the same time, there is a lack of technical capability in many
organizations to effectively secure their systems. This paper explores a dual approach to cybersecurity: static security monitoring through rule matching
and the application of self-supervised machine learning. By combining these approaches, organizations can better defend against cyber threats. One area of
focus is supply chain resilience and smart logistics, where the integration of these methods is particularly critical. This approach emphasizes a self-learning
and self-healing approach, allowing systems to adapt and respond to new threats autonomously. Integrating Artificial Intelligence (AI) and Machine
Learning (ML) into DevSecOps practices is essential for improving security, efficiency, and innovation in software development and deployment. This
paper delves into strategies and best practices for leveraging AI/ML within the DevSecOps framework. It discusses automated threat detection, predictive
analytics for vulnerability management, and intelligent automation for continuous integration and deployment. However, this integration also presents
challenges, such as data privacy, algorithm transparency, and ethical implications. The paper addresses these challenges and showcases how organizations
can use AI/ML to optimize their DevSecOps pipelines, mitigate security risks, and foster continuous improvement. The adoption of Infrastructure as Code
(IaC) has increased the potential impact of even minor flaws, especially in critical domains like healthcare and maritime applications. Existing solutions
typically focus on either Static Application Security Testing (SAST) or run-time behavior analysis.

Citation: Khirod Chandra Panda, Shobhit Agrawal (2022)Application of AI and ML in the Field of DevSecOps. Journal of Artificial Intelligence & Cloud Computing.
SRC/JAICC-297. DOI: doi.org/10.47363/JAICC/2022(1)280

J Arti Inte & Cloud Comp, 2022 Volume 1(4): 2-4

instructions similarly as software source code [1]. For that purpose,
usually, both human- and machine-readable scripts are leveraged
to automatize the underlying operations, while eliminating the
need of manual intervention as much as possible. This way, high
degree of deployment repeatability and reusability is achieved,
saving both the time and reducing the operational costs for the
involved parties [1]. Additionally, modifications of IaC scripts for
the purpose of application updates during the lifecycle is process
prone to various errors and mistakes, e.g., exposing credentials,
applying wrong/outdated settings or configuration parameters.
Preventing the worst consequences by performing IaC inspection
with Static Application Security Testing (SAST) tools covers only
a subset of potential issues in design-time. Others can be detected
only when applications is already deployed, running in production
environment and facing the load of users and potential attacks.

In this application life-cycle stage we can apply Dynamic
Application Security Testing (DAST) tools or monitoring the
application to detect abnormalities as soon as possible . The paper
proposes a proof-of-concept of tools contributing to SAST and
complement the DAST approach in the DevSecOps wokrflow.
First, we improved the DevSecOps design-time experience by
developing a Python-based tool called IaC Scan Runner in order
to integrate a variety of static component and security inspection
check tools targeting state-of-art IaC languages [3]. In our case,
the focus is on Ansible playbook-related case study including
sophisticated component and security checks. On the other
side, the dynamic/run-time aspects are covered by the proposed
approach. For run-time phase we developed a VAT and AI-enabled
log inspection tool called LOMOS. The paper is concluded by
listing the domains where tools are applied and pointing out the
future work.

Background and Related Work
DevOps Phases and Workflow
DevSecOps is differentiated into 5 phases: Plan, Develop, Test,
Release and Operations.

The first plan stage includes the three essential security tasks
that must be considered to generate and analyze the security
essentials, develop threat models and implement a roadmap for
success control.

Developing the code and getting peer review is part of the
development phase.

Testing the security of the things that are planned and developed
is the aspect of the Test phase of the DevSecOps cycle. In testing
phase, the Static Application Security Test is conducted.

The software is developed, released, and deployed in the non-
production phase and the production circumstances in the release
and deployment. Dynamic application security testing, red testing,
etc., are performed in release phase.

Once the application is deployed in production, maintaining, and
monitoring the application occurs in the operations phase.

DevOps practices have been increasingly applied to software
development and the machine learning lifecycle, known as

MLOps. Implementing MLOps efficiently is crucial, but there
is limited information in academic literature on how to do so
effectively. To address this gap, Matsui and Goya propose five
essentials. steps for implementing MLOps, serving as a reference
guide for those interested in adopting MLOps practices [2,4].
Additionally, Gawre suggests integrating machine learning
with DevOps through Continuous Integration/Continuous
Deployment (CI/CD) and dynamic hyperparameter changes to
achieve increased accuracy without human intervention. This
approach is applicable to any type of machine learning model,
with a focus on neural networks [5].

 Moreschini et al. propose a graphical representation for MLOps,
called MLOps, which combines the simplicity of DevOps with
circular steps for ML incorporation, creating a self-maintained
ML-based development subsystem [5]. Finally, Cankar et al.
address the security concerns in DevOps by proposing IaC Scan
Runner and LOMOS, tools that provide static analysis and
runtime anomaly detection for Infrastructure as Code (IaC) [6].

Figure 1: Intersection of Disciplines of the MLOps Paradigm

Approach
In this paper, we adopt an approach which tackles the previously
mentioned issues related to security and trustworthiness within
the scope of DevOps workflows in both the design and run-time
phase, based on DevSecOps philosophy [2]. In the design phase,
we rely on (i) a service for static code scanning, integrating many
independent tools and in run-time phase, we developed (ii) an
NLP-based service for detecting anomalies and therefore potential
issues in system logs. Both services are applicable on wide set of
IaC related formats and standard and provide a summary of the
scans to the final user. Figure 1 depicts the proposed DevSecOps
workflow based covering the aspects of both design and run-time
trustworthiness, leveraging the proposed (i) and (ii) approaches
in synergy with other DevSecOps steps. In the first step, when
user has already designed an application, she provides the desired
archive containing IaC scripts and submit it for static scanning.
Here, user is able to notice if issues exist, and correct the code,
accordingly. After user intervention and code correction, the
IaC archive is checked once again and deployed in case that no
problems were detected. After the successful deployment, when
the infrastructure is up and running the services, the infrastructure
or application logs are acquired. These logs unveil a lot of potential
security issues that is known described by experts.

Citation: Khirod Chandra Panda, Shobhit Agrawal (2022)Application of AI and ML in the Field of DevSecOps. Journal of Artificial Intelligence & Cloud Computing.
SRC/JAICC-297. DOI: doi.org/10.47363/JAICC/2022(1)280

J Arti Inte & Cloud Comp, 2022 Volume 1(4): 3-4

Figure 2: Generic DevSecOps Pipeline that Accommodates all
the IEEE Processes [7]

To identify unknown problems and to label potential issues, an
additional AI-based analysis service is processing the logs and
detecting anomalies, ranking them with an evaluation score, so
users can focus only on the parts of history logs that potentially
present a threat.

A more complex scenario may present two pipelines that share
common characteristics and use the switches to evaluate the
quality of the identified ML patterns. Figure 3 above illustrates
our example.

Design-Time IaC and Component Inspection
During the design-time service, the user submits an IaC archive for
scanning by the IaC Inspector. The IaC Scan Runner then evaluates
the user-selected checks with the archive and automatically
identifies the compatible checks to perform [8]. Our significant
contribution in this process is the development of the Ansible
component inspector. Our analysis identified a gap where Ansible
IaC code relies on multiple Ansible Collections that offer specific
functionality. However, including each collection introduces
potential risks, as collections could be outdated or vulnerable.
To address this, we developed a tool with the following features:

•	 Parameter Checking: Identifies incorrect configurations
and ensures the correct parameters are used, considering
their relationships.

•	 Best Practices Adoption: Ensures anti-patterns are avoided.
•	 Module Checking: Identifies name changes and redirects,

checks for fully qualified names, and ensures only certified
and approved modules are used.

•	 Correction Recommendations: The error assistant guides
users through hard-to-detect errors, with errors and warnings
distinguished by colors.

This framework, which combines IaC and component checks, is
implemented in Python and offers both a web-based REST interface
based on FastAPI and a command-line interface (CLI) for easier
integration with DevOps pipelines. The OpenAPI specification
can be used with the SwaggerUI graphical interface to interact
with the deployed service. The framework covers a variety of
check tools, from basic linters (e.g., pylint for Python, YAMLlint
for TOSCA and Ansible YAML files, Hadolint for Docker files)
to more advanced security-related tools (e.g., Terrascan and tfsec
for Terraform, Steampunk Spotter for Ansible, xOpera TOSCA
parser for TOSCA YAML). Additionally, informational tools that
provide IaC archive-related statistics, such as cloc, are included.
The service, named IaC Scan Runner, is open-source software
available on GitHub, aimed at consolidating various IaC-related
static script scanning tools into a unified web-based API. To
simplify its use, the component inspection tool is integrated
into the IaC Scan Runner and can be initiated along with other
supported scans. A professional version of the component
inspection tool is also available separately under the commercial
name Steampunk Spotter. In addition to static IaC analysis, the tool
assists in automation code writing and offers recommendations
for Ansible Playbooks. It can be easily integrated into GitHub CI/
CD workflows using the command-line interface.

LOMOS
A log analysis tool that leverages AI-powered log analysis to
enhance dynamic security. This tool automatically analyzes
system or application logs, providing valuable insights into the
current and past status of monitored assets. Based on LogBERT
and implementing self-supervised NLP methods like Masked
Language Modelling, LOMOS uses deep learning techniques
to consider various log aspects, such as message semantics
and sequential information [8]. This AI-based approach can
analyze messages automatically based on historical log records,
considering factors like severity and occurrence frequency. It
enables unsupervised differentiation between normal flow and
abnormalities, sending notifications to the user when unexpected
behavior or incidents occur. Traditional log monitoring solutions
are limited to rule based (manual) analysis of time series data. In
contrast, LOMOS makes use of state-of-the-art Natural Language
Processing architectures to model log streams and capture their
normal operating conditions. This enables the implementation of a
monitoring system that does not depend on any manually defined
rules or human intervention, but that relies on that behavioral
model to automatically detect deviations that would represent
any kind of abnormal situations, including potential security
threats. Our approach automatically analyses system or application
logs and provides valuable insights regarding the current and
past status of the monitored assets. The technology uses deep
learning techniques, to compute anomaly score on sequences of
log templates, applying NLP models to the IDs defined for the
templates. Without any manual preprocessing of raw logs from
unstructured data, LOMOS aims at learning patterns in logs and
identifying anomalous behavior. To that aim, LOMOS tries to
get some structure by identifying what are the log templates that
would match the log. The algorithm behind this tries to identify
parameters (ids, services, ports, etc.) transforming the unstructured
logs to structured log templates broken down according to the
tree structure (with wildcards for parameters changing from log
to log). Then, LOMOS observes the sequence of templates trying
to learn what is the normal behavior and provides an anomaly
score (including aggregation and specific counts) that should be
low for normal logs.

Citation: Khirod Chandra Panda, Shobhit Agrawal (2022)Application of AI and ML in the Field of DevSecOps. Journal of Artificial Intelligence & Cloud Computing.
SRC/JAICC-297. DOI: doi.org/10.47363/JAICC/2022(1)280

J Arti Inte & Cloud Comp, 2022 Volume 1(4): 4-4

Copyright: ©2022 Khirod Chandra Panda. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

Figure 4: LOMOS Dashboard (OpenSearch)

In figure 4 above, we can see the LOMOS dashboard showcasing
the dated identified threats, their ranking and the call for action
(orange/red). There is a training period and a monitoring period
ensuring a rapid response, based on the extension of LogBERT
algorithms, using Drain for log template parsing, and OpenSearch
(opensearch.org) or Grafana (grafana.com) to setup alerts and
send them to specific services [8]. Real-time anomaly detection
would require incremental learning (learn sample by sample and
get immediate updates to the ML model) but in this case it does
not make sense as we cannot update the model at every log.

Conclusion
The integration of static rule matching with dynamic self-
supervised machine learning in log analysis presents a promising
approach for detecting anomalies. By combining open-source
security monitoring technology with machine learning-based
anomaly detection, this approach shows potential for enhancing
supply chain resilience and improving DevSecOps frameworks.
A key research question is how anomalies identified through
this process can be transformed into Security Information and
Event Management (SIEM) rules, with the LOMOS tool playing
a crucial role in this transformation. Integrating LOMOS results
into the SIEM could enhance its ability to adapt to new threats
and provide valuable insights for more accurate event creation.

In the realm of DevOps, this paper demonstrates the importance
of integrating various tools for static code analysis and anomaly
detection to ensure trustworthiness in both design and run-time
aspects. The approach focuses on leveraging automatic code
correction in static analysis, complemented by a dynamic
approach based on machine learning methods. Future work
includes automating procedures for extending design-time
analysis tools with new Infrastructure as Code (IaC) checks
and further developing run-time security approaches for supply
chain cybersecurity and failure detection. This approach is also
planned for incorporation into platform engineering, promoting
collaboration and automated infrastructure management.

While this paper emphasizes incremental accuracy improvements,
it also highlights the potential for creating comprehensive end-
to-end automated MLOps pipelines. By integrating feature
engineering and feed-forwarding techniques, these pipelines can
optimize time utilization for data scientists and ML engineers,
allowing them to focus on innovation and research. This approach
streamlines the deployment process for ML models, ensuring
efficient allocation of company resources and enabling analysts
to concentrate on business objectives rather than technological
uncertainties.

References
1.	 Juncal Alonso, Christophe Joubert, Leire Orue-Echevarria,

Matteo Pradella, Daniel Vladušic (2021) Programming
trustworthy Infrastructure As Code in a Secure Framework.
In First SWForum workshop on Trustworthy Software and
Open Source 1-8.

2.	 Garg S, Pundir P, Rathee G, Gupta PK, Garg S, et al.
(2021) On Continuous Integration/Continuous Delivery for
automated deployment of machine learning models using
MLOps. In: 2021 IEEE Fourth International Conference on
Artificial Intelligence and Knowledge Engineering (AIKE).
Laguna Hills, USA: IEEE 25-28.

3.	 He P, Zhu J, Zheng Z, Lyu MR (2017) Drain: An online
log parsing approach with fixed depth tree. In 2017 IEEE
international conference on web services (ICWS) 33-40.

4.	 Mäkinen S, Skogström H, Laaksonen E, Mikkonen T (2021)
Who needs MLOps: What data scientists seek to accomplish
and how can MLOps help? In: 2021 IEEE/ACM 1st Workshop
on AI Engineering-Software Engineering for AI (WAIN).
Madrid, Spain: IEEE 109-112.

5.	 Gupta S, Bhatia M, Memoria M, Manani P (2022) Prevalence
of GitOps, DevOps in Fast CI/CD Cycles. In: 2022
International Conference on Machine Learning, Big Data,
Cloud and Parallel Computing (COM-IT-CON). Faridabad,
India: IEEE 589-596.

6.	 12207-2017 - ISO/IEC/IEEE International Standard - Systems
and software engineering -- Software life cycle processes.
IEEE Xplore https://ieeexplore.ieee.org/document/8100771.

7.	 Nenad Petrovic, Matija Cankar, Anže Luzar (2022) Automated
Approach to IaC Code Inspection Using Python-Based
DevSecOps Tool. 2022 30th Telecommunications Forum
(TELFOR) 1-4.

8.	 Haixuan Guo, Shuhan Yuan, Xintao Wu (2021) LogBERT:
Log Anomaly Detection via BERT. Arxiv https://arxiv.org/
abs/2103.04475.

