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Introduction  
The study of the relation between compacts objects and the 
gravitational collapse is one of the most fundamental and important 
factors in astrophysics and has attracted much researchers and 
scientists due to formulation of the general theory of relativity.  
In the construction of the first theoretical models of relativistic 
stars, some works are important such as Schwarzschild, Tolman, 
Oppenheimer and Volkoff [1-3]. Schwarzschild found exact 
solutions to the Einstein's Field Equations and Tolman proposed 
a method in order to obtain explicit solutions of static spheres of 
fluid in terms of known analytical functions. Oppenheimer and 
Volkoff have deployed Tolman's solutions in order to investigate 
about gravitational balance of neutron stars [1-3]. It is noticed 
that Chandrasekhar's contributions in modelling for production 
of white dwarfs under relativistic effects and research of Baade 
and Zwicky establish the concept of neutron stars as relativistic 
star of very dense matter [4, 5].

Many researchers have used a great variety of mathematical 
techniques to try in order to obtain solutions of the Einstein-
Maxwell field equations since it has been demonstrated by Bowers 
y Liang, Ruderman, Canuto, Komathiraj and Maharaj, Cosenza et 
al,  Esculpi et al and Malaver [6-22].  These investigations show 
that the system of Einstein-Maxwell equations plays an important 
role to describe ultracompacts objects.

In the formulism of realistic model of super dense stars, it is also 
important to include the pressure anisotropy. Bowers and Liang 
extensively discuss the effect of pressure anisotropy in general 
relativity [4]. At a density of the order of 1015 g/cm3 nuclear 

matter may be anisotropic when its interactions need to be treated 
relativistically [7]. 

In massive objects the radial pressure may differ from the 
tangential. In 1933, Lemaitre established that in stellar models 
consisting of spherically symmetric distribution of matter the 
stress tensor may be locally anisotropic [23]. From theoretical 
work realistic stellar models, it has been suggested that superdense 
matter may be anisotropic, at least in some density ranges [24-
33]. The existence of anisotropy within a star can be explained 
by the presence of a solid core, phase transitions, a type III super 
fluid, a pion condensation or another physical phenomenon by 
the presence of an electrical field [34-36].

Bowers and Liang generalized the equation of hydrostatic 
equilibrium for the case of local anisotropy [4]. Bondi have shown 
that for anisotropic fluids there exist a surface redshift bound, if 
either the strong or dominant energy condition are considered 
to hold within the star [31]. Esculpi et al have obtained a new 
family of anisotropic solutions with uniform energy density, 
where solutions depend on two parameters that can be adjusted 
to improve gravitational redshift [11]. Also, the assumption of 
local anisotropy has been used to study problems related to various 
relativistic compact objects [37-47].  

In order to describe the behavior of an anisotropic fluid distribution 
when it exits the dynamic equilibrium, Herrera and Di Prisco et 
al. propose the concept of cracking, which implies the appearance 
of different radial forces within the system [48-50]. We say that 
there are cracking whenever inward in the inner part of the sphere 
for all values of the radial coordinate. Otherwise, when the force 
is directed outward inside and changes direction in the outermost 
regions of the star, then there is an inversion [48-50].
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ABSTRACT
Mathematical modeling within the framework of the general theory of relativity has been used to explain the behavior and structure of massive objects as 
neutron stars, quasars, black holes, pulsars and white dwarfs and requires finding the exact solutions of the Einstein-Maxwell system. In this paper we study 
the effects induced by fluctuations of local anisotropy in a new family of anisotropic solutions depending on a parameter α, whose value α=2 provides a radial 
pressure having the same functional dependence on the radial coordinate as the Schwarzschild solution. It is shown the effect the functional dependence 
on the radial coordinate has in the occurrence of cracking within the sphere when anisotropy fluctuations are allowed.
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Herrera established that the appearance of a cracking is induced by 
the local anisotropy of a fluid distribution, whereas in the case of a 
perfect fluid outside equilibrium, the configuration tends to expand 
or collapse [48]. Chan et al studied the role of local anisotropy 
over dynamic instability and found that small anisotropies can 
drastically change the evolution of a system [51]. Di Prisco et al 
studied the role of local anisotropy fluctuations and determined 
that these fluctuations are a crucial factor for cracking [50]. Abreu 
et al considered a particular type of perturbation  in which the 
difference in sound velocities is taken into account, where v2

sr 
and v2

s┴
  represent the velocity of radial and tangential sound, 

respectively and found that regions  where                  within a matter 
distribution, no cracking will occur and it could be considered as 
stable [41]. Manjarrés analyzes what happens in charged spheres 
when the charge is perturbed with energy density and anisotropy, 
and finds that these perturbations can lead to the appearance of 
cracking [52]. Malaver finds that when a slow adiabatic contraction 
is performed on an anisotropic sphere model, which depends on an 
adjustable parameter and a coefficient that measures anisotropy, 
this model turns out to be unstable on the surface of the sphere 
so instability could occur in the outer layers [53]. 

The aim of this research is to study the behavior of anisotropic 
fluid solutions found by Esculpi et al against density variations 
and local anisotropy and to determine the factors that favor the 
appearance of cracking [11]. The results shall be compared with 
previous results for similar anisotropic solutions. We have used the 
method suggested by Herrera and Di Prisco et al in the study of 
cracking for compact and anisotropic objects with constant density 
in which radial pressure is only a function of the radial coordinate 
[48, 50]. In our case radial pressure is written as the product of a 
function that depends on the anisotropy factor and a function of 
the radial coordinate, which as in Herrera’s work remains constant 
against the variation of energy density and anisotropy [48]. 
Comparing the behavior of the family of solutions for different 
values of the parameter α, which defines the functional form of 
the pressure with the radial coordinate, the influence of the model 
on the appearance of cracking is verified. The paper is structured 
as follows: the next section, Sect.2, are presented the interior 
solutions of Einstein-Maxwell field equations of anisotropic fluid. 
In Sect.3, the occurrence of cracking was calculated when local 
anisotropy fluctuations occurred for an anisotropic star model 
with uniform energy density. In Sect.4 discusses and concludes 
the work. 

The Einstein Field Equations
Considering a spherically symmetrical Quadri dimensional space, 
whose line element is described by the Schwarzschild coordinates 
given by [1,2]:

                                                                                            (1)

With a static distribution of matter consisting of a non-pascalian 
hydrodynamic fluid, with an energy-impulse tensor given by the 
expression

                                                                                            (2)   

Einstein’s field equations are:

                                                                                            (3)

                                                                                            (4)

                                                                                              (5)

and from equation (3) we obtain

                                    where                                              (6)

Using equations (4) and (5) we obtain the generalized Tolman-
Oppenheimer-Volkov equation [3] for hydrostatic equilibrium in 
the presence of tangential pressure:    

                                                                                            (7)

Analysis of fluctuations in anisotropic stars
This section determines the appearance of cracking when 
fluctuations in local anisotropy occur for an anisotropic star 
model with uniform energy density proposed by Esculpi et al 
[11]. The procedure suggested by Herrera and Di Prisco et al has 
been used in the study of cracking for compact and anisotropic 
objects [48-50].

There are a large number of physical processes that give rise to 
deviations from the local isotropy of the fluid, such as exotic 
phase transitions involving the appearance of an anisotropic phase 
during the gravitational collapse process [51]. The existence of 
solid nuclei and the presence of superfluids may give rise to local 
anisotropy [34]. Also, the overlap of two perfect fluids can be 
described as an anisotropic fluid [54].

 The Eq. (7) can be written as

                                                                                                 (8)

Where R defines the total radial force on each fluid element. 
If the system under study is taken out of equilibrium by some 
perturbation, a total radial force R appears, which can lead 
to cracking or inversions [48,49]. Given a state equation for 
hydrodynamic variables and suitable juncture conditions, it is 
possible to obtain a solution for Einstein’s field equations. A 
distribution of matter with uniform energy density ρ, contained 
in a sphere of radius a, is considered and a relationship between 
radial and tangential pressures is proposed which generalizes the 
solution proposed by Dev and Gleiser as follows [35]:

                                                                                          (9)

                                                                                         (10)
 

Where C is the anisotropy factor and α is a new parameter that 
varies the relationship between radial and tangential pressure 
for a given value of the anisotropy parameter. Equation (10) can 
be substituted into the equation for hydrostatic equilibrium and 
solved, considering the possible values for the discriminant and 
obtain:

                                                                                         (11) 

  For values Δ > 0, the radial pressure within the star is given by:
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                                                                                               (12)

For the analysis of cracking, the solution shown in equation 
(12) representing a new exact solution for anisotropic stars with 
uniform density where C is the anisotropy constant,

                                                          and α is a parameter that 

measures the degree of anisotropy. For α=2 an expression is 
obtained for the radial pressure which has the same functional 
dependence on the radial coordinate of the Schwarzschild solution. 
The following dimensionless variables are now introduced:

                                                                                       (13)

The expression (12) can then be written in the form:

                                                                                       (14)

and we have :

                                                                                        (15)

                                                                                       
(16)

The system is now perturbed according to the scheme established 
by Herrera and Di Prisco et al where density and anisotropy are 
also perturbed and the radial dependence is invariant, i.e. [49-51]:

                                                                                       (17)

                                                                                       (18)

                                                                                       (19)

where it has been considered that:

                                                                                       (20)                 

The tilde indicates how much is being disturbed.

From equations (12), (13), (14) and (15) the expression for R 
takes the form:

                                                                                          (21)
                                                                                           
To calculate   , the following dimensionless function must be 
introduced: 

                                                                                          (22)    

and the expression  for    is as:

                                                                                            (23)

Considering 

 
                                                                                     (24)

We obtain that:

                                                                                             (25)

For a cracking to occur it is necessary that     has a zero in the 
range -1 ≤ x ≤ 1.

Figure 1 shows how the radial force varies with the radius of the 
star for an anisotropy factor value C=0.73 and different values of    
,  keeping the gravitational potential value fixed and equal to  = 
0.2 and where it has been considered that   ³ 0, D > 0.  It is shown 
that when α increases the radial force    decreases;  for values of  
α <2 sign changes occur and the cracking occurs in regions close 
to the surface of the star as it increases α , which corresponds to 
the presence of cracking for these values of  α. In this model, as 
in that of Bowers and Liang, cracking is presented for a low value 
of  , that is for more compact configurations [6, 51].

                                                                                     (17)

                                                                                     (18)

                                                                                     
(19)

where it has been considered that:

                                                                                     (20)

The tilde indicates how much is being disturbed.

From equations (12), (13), (14) and (15) the expression for R 
takes the form:

                                                                                       (21)

To calculate   , the following dimensionless function must be 
introduced: 

                                                                                      (22)

and the expression  for    is as:

                                                                                        (23)  
Considering 

                                                                                        (24)
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We obtain that:

                                                                                             (25)

For a cracking to occur it is necessary that     has a zero in the 
range -1 ≤ x ≤ 1.

Figure 1 shows how the radial force varies with the radius of the 
star for an anisotropy factor value C=0.73 and different values 
of α,  keeping the gravitational potential value fixed and equal to 
μ  = 0.2 and where it has been considered that

It is shown that when α increases the radial force     decreases;  

for values of  α <2 sign changes occur and the cracking occurs 
in regions close to the surface of the star as it increases α , which 
corresponds to the presence of cracking for these values of  α. In 
this model, as in that of Bowers and Liang, cracking is presented for 
a low value of  α , that is for more compact configurations [6, 51]. 
An analogous behavior is presented in Figure 2 for an anisotropy 
factor of C = 0.45 and the same value of the gravitational potential. 
In both figures it is observed as an increase of C causes a decrease 
in the radial force   , contrary to what occurs in the model of 
Bowers and Liang, in which it is observed that as it decreases h, 
where h=1-2C, which is the parameter that measures anisotropy, 
increases the radial force, as shown in Figure 3  [6]. For the 
models considered, small fluctuations in the values of C and h, 
that is, changes in the local anisotropy of the fluid can cause the 
appearance of cracking. 

Figure 1:     as a function of   x for µ=0.2, C=0.73 and different 
values of the parameter α. The plot with lines and with two 
alternating dots corresponds to α = 0.25, the dash line corresponds 
to α=0.5, with short lines corresponds to α=1.0 and solid line is 
for α=1.5.

Figure 2:      as a function of   x for µ=0.2, C=0.45 and different 
values of the parameter α. The plot with lines and with two 
alternating dots corresponds to α = 0.25, the dash line corresponds 
to α=0.5, with short lines corresponds to α=1.0 and solid line is 
for α=1.5.

Figure  3:     as a function of x for µ=0.2 for the Bowers and Liang 
model [6]. The solid line and the long-dash line correspond to 
C=0.45; h=0.1 and C= 0.73; h = -0.46, respectively.

Figure  4: Exponent Γ/2 as a function of the parameter α for 
different values of the anisotropy factor C. The solid lines, long 
dash line, dash-dot line, spaced dots and short-dash line correspond 
to the values of C = 0.15, 0.25, 0.35, 0.55 and 0.75 respectively.
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Conclusion
A cracking analysis for a new anisotropic star model with uniform 
energy density has been presented in this paper. For this model 
with anisotropy parameter values C=0.45 and C=0.73, cracking 
occurs near the surface of the sphere as values of α increase and 
anisotropy is an important parameter for determining cracking 
conditions when gravitational potential is modified.

 It is interesting to highlight the marked dependence of the response 
to the cracking with the type of model. Variations in anisotropy 
are expected to allow for cracking under certain conditions. A 
modification of the parameter α can generate different expressions 
for radial pressure, which in turn changes the response to the 
cracking. As each value of α changes the exponent Г it is obvious 
then that the parameter α defines the different model types, as 
shown in Figure 4. It is observed that α is increased when   Г 
decreases and takes values smaller than one for values of α greater 
than 2, and greater than one for α <2. For α= 2, the exponent 
acquires the constant value Г =1, regardless of the value of C. If 
α ˃ 2, the exponent Г/2 decreases when the value of C increases, 
keeping constant the value of α. Si α ˂ 2, Г/2 decreases when C 
decreases for a fixed value of α. For α ˂  2 the presence of cracking 
is observed. 

The appearance of cracking, associated with fluctuations of the 
local anisotropy, depends on the functional form of the pressure 
with the radial coordinate. Indeed, a modification of the parameter 
can generate different expressions for radial pressure, which in turn 
changes the response to the cracking, but such a cracking always 
occurs in regions close to the surface of the sphere. This behavior 
is to be expected according to Malaver who finds that when a slow 
adiabatic contraction is made in the model of anisotropic star with 
uniform density proposed by Esculpi et al [11], this model turns 
out to be more stable in the outer layers than that of the Bowers 
and Liang solution [6], so it is likely to present instability in the 
outer layers [6, 11, 53].
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