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Introduction 
The circle maps curve the phase response and the Arnold tongues 
of Consider some physical quantity ξ, which reflects the internal 
state of the biological oscillator. Let the eigenfrequency of the 
oscillator be equal T0. Let’s call a marker any event that can be 
clearly seen in the experiment, which is reached by the value ξ 
only once per period. Such a marker may be, for example, the 
beginning of the action potential in the cardiac preparation. Let’s 
define the oscillator phase as follows. The phase of an arbitrarily 
selected marking event (for example, the maximum value of ξ) 
is assumed to be zero. At any next time t, 0 < t < T0, the phase 
is defined as φ = t ∕ T0 (mod1). Since the rhythm is restored after 
the perturbation of the system, the introduced phase completely 
determines the state of the system.
 
Suppose that an external periodic perturbation acts on a nonlinear 
oscillator. Then each external influence shifts the state of the 
system to a new state (1): 
          
                   φn+1 = φn + f (φn) (mod1). (1)

The function f (φn) is called the phase response curve (PRC) [1-3] 
and determines the phase change after the stimulus. It is convenient 
to represent the points f (φn) of the system state lying on the circle 
of the unit radius. Then, by iterating the mapping (1), one point of 
the circle is converted to another point of the same circle. If the 
circle map is continuous, then it can be characterized by a number 
called the topological degree and equal to the number of passes 
through φn+1  the unit circle during  f (φn) the time it passes once. 
In periodic perturbations of self-oscillations with a stable limit 
cycle, the dynamics is often described by maps of a circle with a 

topological degree 0 (when the over-threshold response gives rise 
to a new cycle) or 1 (which expresses a sub-threshold response to 
stimulation). The different types of circle maps are shown in Fig.1. 

Figure 1: Different types of circle maps [1]: (a) reversible, 
topological degree 1; (b) irreversible, topological degree 1; (c) 
piecewise continuous; (d) topological degree 0.

Figure 2: Schematic diagram of Arnold tongues. In shaded areas 
there is a steady phase capture. There are always other zones 
between any two capture zones.
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ABSTRACT
In this publication, we generalize the proposed model of two interacting oscillators in the case of a strong difference in their periods (when the pacemaker 
pulses do not alternate) and propose a General model describing a network of oscillators coupled globally. Our goal is to make the model as simple as possible 
and enter the minimum number of parameters. Therefore, we will fully characterize the pacemaker of their internal lengths of the cycle and re-present them 
as pulse oscillators. Interaction of pacemakers is described by PRC.
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The analysis of bifurcations of reversible circle maps was 
undertaken in the last century by A. Poincare and still attracts 
much -by V. I. Arnold (see also and the references given there). 
For fig.2 the bifurcation diagram of the circle diffeomorphism on 
the parameter plane (b, a) is shown. This diagram is divided into 
areas called language (or horns) of Arnold, which correspond to the 
sustainable capture phase ratio N/M (i.e., N cycles of the stimulator 
has M cycles of a nonlinear oscillator). Arnold languages exist 
for all rational relations N/M, where N and M are mutually Prime 
numbers. This means that there are an infinite number of Arnold 
languages that correspond to all possible ratios of frequencies 
of the stimulator and the perturbed oscillator. Between any two 
languages corresponding to N/M and N*/M* phase captures, 
there is another capture region corresponding to the capture of 
multiplicity phases (N+N*)/(M+M*). The structure shown in 
Fig.2, is the usual behavior for low stimulus amplitudes in simple 
theoretical models discussed below. However, as the amplitude of 
the periodic effect increases, this structure collapses [4,5].

To analyze the pandemic state within an infected society, we 
can use the simplest case (and the roughest) approximations of 
this PRC, which is the sinusoidal function. Unencrypted phase 
regions can be used as a quarantine state for an infected society. 
Where: δ - corresponds to the distance inside the infected society, 
a - corresponds to the given time spent inside the infected society, 
γ - corresponds to active behavior within the infected society.

Phase of Seizure with One-Sided Interaction of the Pacemaker 
Taking Into Account the Refractoriness

The simplest case of a period of refractoriness [6-12]:

                                                                                         (3)

Figure 3: Phase diagram for the sine circle mapping with 
consideration for the refractoriness period (3) and stable phase 
captures of the sine map (3) inside the 2:3 capture splitting region.

Let’s say, for example, δ=0.1 . The General structure of the phase 
capture regions obtained as a result of a numerical study of the 
system (3) is shown in (Fig.3.left) it is Clearly seen that taking into 
account the period of refractoriness splits the Central languages. In 
these areas, a detailed study of the phase pattern was conducted. 
It turned out that the presence of refractoriness time leads to the 
appearance of phase captures that are multiples of the main one. 
For example, regions with a multiplicity of 2k:3k for a whole k 
were found inside the 2:3 capture (Fig.3. right). A similar pattern 
can be observed inside the splitting of other captures. To analyze 
the transmission of infection from an infected member of society 
to an uninfected member of society, we use a system of two 
interacting nonlinear pulse oscillators.

Model of Two Interacting Pacemakers Taking Into Account 
the Refractoriness Time
In this section, we consider two interacting leading centers (pulse 
oscillators) that can be pacemakers in cardiac tissue, construct a 

model of such interaction, and investigate its behavior [13-19].

The Principle of Constructing a Model 
Consider a system of two interacting nonlinear pulse oscillators 
fig.4. Let the momentum of the first oscillator with the period of 
undisturbed oscillations appear at the moment of time, and the 
momentum of the second oscillator with the period of undisturbed 
oscillations appear at the moment. Then the moments of time of 
occurrence of the following pulses are defined as:

Figure 4: The scheme of construction of the model describing 
the system of two interacting nonlinear oscillators

Now, assuming that under the influence of the second pulse, the 
period of the first oscillator will change by some value Δ1((τn − tn) 
∕ T1) (where the expression in parentheses shows that this value 
depends only on the phase of the second pulse relative to the first), 
then the corresponding expression for tn+1 will look like: 
tn+1 =  tn + T1 + Δ1((τn − tn) ∕ T1). When you consider that τn+1 > tn+1, 
that for τn+1 get a similar expression:

τn+1 = τn + T2 + Δ2((tn+1 − τn) ∕ T2). Dividing both of these expressions 
by T1, we find the corresponding expressions for the phases (4): 

                                                                                             (4)

Here φn = tn ∕ T1 − phase of the first perturbed oscillator relative 
to the undisturbed (with the period T1), δn = τn ∕ T1   − the second 
phase of the disturbed oscillator with respect to the same first 
oscillation with a period of T1. Introducing the parameter a = T2 ∕ T1 
(the ratio of the eigenfrequencies of both oscillators) and labeling 
f1 = Δ1 ∕ T1, f2 = Δ2 ∕ T1, after the transformations we obtain (5):

                                                                                              (5)

Since we are interested in the phase difference of the described 
oscillators, the final expression, which will be used in the future, 
is as follows (6):

xn+1 = xn + a + f2[(1 ∕ 2)(1 + f1(xn) − xn)] − f1(xn)          (6)

     where xn+1 = δn − φn.

Expression g(xn) = xn + a + f1(xn), included in the right side of 
the equation is a circle map describing the effect of the constant 
perturbation on the nonlinear oscillator. Taking into account the 
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mutual influence of oscillators leads to the appearance of an 
additional nonlinear term. Thus: xn+1 = g(xn) + f2[a

−1(1 − g(xn))]    
(mod1).
 
Function f1(x),  f2(x) called phase response curves, which generally 
do not coincide with each other. Both oscillators are sources of 
action potentials in the same tissue, have a similar nature, and can 
be considered functions f1(x) and f2(x) approximately the same. It 
is known that the response of the oscillator to an external stimulus 
depends only on the stimulus phase of its amplitude and the PRC 
changes its shape when the amplitude of the external influence 
changes. This means that the functions that define the type of phase 
response curves must depend on one parameter that determines 
the magnitude of the amplitude. In the case of this dependence 
can be considered multiplicative. Then the phase response curves 
will be written as: f1(x) = γh(x),  f2(x) = εh(x). 

Where h(x) − periodic function, h(x +1) = h(x). Under this 
assumption, the formula (6) will take the form:

xn+1 = xn + a + εh[(1 ∕ a)(1 + γh(xn) − xn)] − γh(xn)     (mod1), (7)

Let’s focus on the study of the display (7) sinusoidal functions 
[20, 21].

General Case of Interaction between Two Pacemakers Phase 
Captures In Two-Way Interaction of Oscillators
As a model of two non-linearly interacting excitation sources, 
we consider two coupled oscillators, assuming the role of h(x) 
sinusoidal function without taking into account the refractoriness 
and assuming the value of the influence of the first oscillator on 
the second ε=0.1 . Then display (2) will take the form (8) [22,23]: 

                                                                                             (8)

Figure 5: Phase diagram of the sine mapping of the circle (8) taking into account the mutual influence of oscillators

The location of the phase capture regions obtained as a result of 
numerical research (8) is shown in Fig.5. Similarly to the case of 
piecewise linear approximation of phase response curves, taking 
into account the mutual influence of two pulse systems leads to 
the curvature of the phase capture regions, their overlap at low 
γ and splitting of the main languages. Within the split regions, 
grabs that are multiples of the main one occur.
 
Analysis of the model of two interacting oscillators
To analyze the transmission of infection from an infected member 
of society to an uninfected member of society, we use a system 
of two interacting nonlinear pulse oscillators. To analyze the 
transmission of infection from an infected society to an uninfected 
society, we use a system of two interacting nonlinear pulse 
oscillators.

Unencrypted phase regions can be used as a quarantine state. Phase 
portraits with a stable periodic cycle correspond to infection, and 
areas of chaos can be used as a quarantine state.Phase portraits 

with a stable periodic cycle correspond to infection, areas of 
multiple bifurcations and chaos can be used as a quarantine state.
 
Approximation of the Active Medium as a Lattice of Pulse 
Oscillators 
In this section, we will demonstrate a way to approximate discrete 
distributed environments based on the General model of coupled 
oscillators (8). Looking at the heart pacemaker at a microscopic 
level, it can be thought of as a large group of cells that generate 
heart rate and synchronize their action potentials to initiate heart 
contractions. Thus, instead of considering a single pacemaker, we 
can construct a lattice of coupled pulse oscillators. In this paper, 
we have limited ourselves to one-dimensional (chain) and two-
dimensional (lattice) cases [24].
 
 Assume that the Autonomous pacemakers are located at the nodes 
of a two-dimensional square lattice of size (N х M). We denote 
the lattice element with coordinates (i, j) as Aij, where i=1,..., N 
and j=1,..., M. we restrict ourselves to considering a homogeneous 
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medium and accept some restrictions on anisotropy. This means 
that the lattice pacemakers are identical, i.e. they have the same 
cycle length Tij ≡ T , i=1,..., N; j=1,..., M, (however, in reality, the 
cells on the periphery of the sine pacemaker have the shortest 
cycle length, although its center acts as the leading pacemaker).
 
This restriction reduces the number of system parameters and 
therefore makes it easier to study the model. Now we will define 
the relationship between the elements. In works on lattices of 
concatenated maps, two main types of coupling are usually 
considered: nearest neighbor coupling and global coupling. Since 
in the previous sections we assumed that pacemakers all interact 
with each other, this time, as an example, we will consider lattices 
with a connection of the nearest neighbor type: first a two – 
dimensional lattice, and then a chain of coupled pulse oscillators 
[25].
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