
J Arti Inte & Cloud Comp, 2024 Volume 3(4): 1-7

Review Article Open Access

AI's Impact on Traditional Software Development
Bhanuprakash Madupati

Journal of Artificial Intelligence &
Cloud Computing

*Corresponding author
Bhanuprakash Madupati, MNIT, MN, USA.

Received: July 10, 2024; Accepted: July 17, 2024; Published: July 24, 2024

ISSN: 2754-6659

ABSTRACT
The application of artificial intelligence (AI) has brought key shifts in conventional tactical software development, including code generation, testing and
debugging, and deployment. Waterfall and Agile development approaches, which have been used for a long time, also widely employ manual and well-
planned steps. However, with the help of automated tools and models such as OpenAI Codex and GPT-4, many aspects of the Software Development
Life Cycle (SDLC) have been made possible. This paper examines the technical aspect of integrating AI into prior traditional software development life
cycle methodologies, emphasizing code automation, intelligent testing frameworks, AI-based debugging, and continuous integration and deployment
pipelines. The analysis is also based on the advantages of utilizing AI for optimizations in efficiency, accuracy, and development speed alongside issues like
over-dependence on AI, ethical questions, and technical constraints. Based on the case and example given in this paper, it is clearly shown that the self-
improvement of AI in software development makes the process more dynamic, autonomous, and optimized.

Keywords: AI-Conventional Software Development, AI-Based
Tools, Software Testing, Code Generation, Debugging, Continuous
Integration/ Deployment (CI/CD), Software Development Life
Cycle (SDLC)

Introduction
Background
The Waterfall, Agile, and DevOps models dominate the IT industry
and have become the grounds for constructing advanced software
solutions. These approaches follow a linear or circulatory model
where coding, testing, and deployment steps are usually involved.
Albeit efficient, these methods may have issues concerning
timeliness, expansiveness, and errors due to human interference.
With changing business environments and technologies, keeping
pace and delivering the software in record time has become
essential. As a result, the Software Development Life Cycle’s
(SDLC) dynamism has been recorded by incorporating Artificial
Intelligence (AI).

Artificial intelligence has advanced much in integrating key
segments of software processing, namely code generation,
testing, debugging, and deployment. Through the use of OpenAI
Codex and GPT-4, among other technological advancements, it
is now possible to write functional code from simple text inputs,
thereby greatly cutting down on the time required to code and
minimizing human errors. Similarly, AI-assisted testing tools
improve traditional testing techniques by detecting bugs and
security breaches faster and more efficiently. AI in these areas
enhances both efficiency and the quality and accuracy of software
applications.

Purpose of the Paper
Technically, this paper investigates how AI affects the conventional
software development paradigms, specifically focusing on how
AI tools and approaches disrupt several misery steps of code

generation, testing, debugging, and deployment. The objectives
of this paper are as follows
•	 It is important to print a selection of the identified sources to

understand better what areas of AI have impacted the original
software development process.

•	 With a primary emphasis on efficiency, accuracy, and cost, it’s
necessary to determine what value AI can contribute to SDP.

•	 To explain the main issues with AI applications in the SDLC
process, including automation dependency and ethical
problems.

•	 Thus, the paper offers an overview of AI's presence and
potential in establishing the vision for software engineering.

Scope and Limitations
Specifically, while this paper will not concentrate on AI's social
implications for the software industry, it will focus mainly on
the technical side of the argument, exploring AI's effects on
software writing, testing, debugging, and deployment. Although
AI impacts diverse domains, this work will focus on concepts and
technologies created and incorporated into the software sector up
to March 2024. The AI and machine learning examples used in the
analysis will be derived from large-scale and agile development
environments.

An Insight into the SDLC – Traditional Analysis of the
Software Development Lifecycle
Key Phases of Traditional SDLC
•	 Structured Software Development: Structured Software

Development processes like SDLC have a very sequential
structure and have long been divided into phases, such as
the Planning, Design, Development, Testing, Deployment,
and Maintenance phases. In conventional approaches, all
stages predominantly rely on manual operations, and people’s
involvement is inevitable at most steps.

•	 Planning and Requirement Analysis: In this phase,

MNIT, MN, USA

Citation: Bhanuprakash Madupati (2024) AI's Impact on Traditional Software Development. Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-E145.
DOI: doi.org/10.47363/JAICC/2024(3)E145

J Arti Inte & Cloud Comp, 2024 Volume 3(4): 2-7

stakeholders help define the project's needs and expectations
with the development team. This is usually a lengthy process
since documentation and analysis are done thoroughly to
satisfy all business requirements. Nevertheless, there is a lack
of stewardship during this phase, where the stakeholders and
developers acquire discrepancies, resulting in later revisions
[1].

•	 Design and Architecture: This phase involves developing the
software structure and ensuring it meets the required needs.
It is typically a manual phase where system architects design
intricate strategies and architectures of the systems, utilizing
various conceptual tools such as Unified Modeling Language
diagrams. The outcome is a clear and concise map to follow
through to the coding phase of the project.

•	 Development (Coding): In the development phase, the
program's design is converted into code that the computer
can execute. As per the architecture diagrams, large-scale
applications are developed by writing smaller programs to be
integrated into languages such as Java, C++, or Python. This
phase might be affected by human errors, which can result
in the creation of some bugs or lower efficiency, which will
be noticeable in future phases [2].

•	 Testing: Testing in traditional SDLC is traditionally done
after the developmental phase. This phase involves physical or
automated testing to check whether the system performs well
and as planned. However, although some level of automated
testing is employed, most testing remains manual, contributing
to time and effort in error detection and remediation [3].

•	 Deployment and Maintenance: Similar to the other phases
in traditional SDLC, the deployment phase is sequential, in
which the software is rolled out in separate stages, and the
upgrades and bug corrections are typically done by hand.
There is frequent maintenance, correlation, and manual
patching; updates are made to correct the bugs and enhance
performance [6].

Table 1: Overview of Traditional SDLC Phases and Key
Challenges
Phase Description Key Challenges
Planning and
Requirement

Gathering
requirements and
creating project
documentation.

Risk of
misalignment with
stakeholders’
expectations.

Design and
Architecture

Developing system
architecture and
design using UML or
similar.

Slow, rigid process;
difficult to adapt to
changes.

Development
(Coding)

Manually code
the software based
on the design
specifications.

Prone to human
errors and delays.

Testing Manual and semi-
automated testing,
focusing on bug
identification.

Time-intensive and
error-prone.

Deployment and
Maintenance

Manual deployment
and ongoing
maintenance.

Sequential and time-
consuming delays in
fixing bugs.

Difficulties of Traditional SDLC
While traditional SDLC provides a structured approach to
software development, it also comes with several challenges:
While traditional SDLC delivers a structured approach to software
development, it also comes with several challenges

•	 Slower Development Cycles: Traditional SDLC is
sequential, which takes longer in the overall development
process. Because each stage must be performed before the
next stage, problems in one stage may influence all aspects
of the project [4].

•	 Difficulty Adapting to Changes: Non-flexible models such
as the Waterfall do not cater to changes in requirements in
midstream. Thus, the project may be suspended, or extensive
modifications may be required in response to a change in
business requirements—both expensive [1].

•	 High Cost of Error Detection and Correction: Many errors
are inserted in the early stages of development and are not
easily identified until the testing or even the deployment
phase, which is costly and time-consuming [3].

Figure 1: AI-Powered Testing Efficiency

This is demonstrated in the following graph, where Test Automation
employs approximately 80% AI, while Software Testing and Test
Management employ only 20% and 40% AI, respectively.

AI in Software Development
AI Technology and its Applications in the SE Discipline
AI is becoming prominent in software development by replacing
traditional human interventions with automation, enhancing
work productivity, and minimizing errors. Three key forms of
AI responsible for this transformation include Machine Learning,
Natural Language Processing, and Reinforcement Learning.
•	 Machine Learning (ML): Deep learning models are widely

applied to improve many aspects of the software development
process, including bug discovery and code enhancement.
These algorithms identify various patterns within the code,
format it, correct it, and even forecast other glitches, making
the code cleaner and more efficient [1,4]. Also, ML plays a
pivotal role in testing in which models estimate which parts
of the codebase are more likely to contain bugs with the help
of historical data to optimize testing procedures [3].

•	 Natural Language Processing (NLP): NLP also involves
code generation using languages such as OpenAI Codex
and GPT-4. They translate instructions in natural language
into code and have become useful in developing tools to
create executable code snippets. This results in a considerable
decrease in the number of hours devoted to completing sets
of codes and allows for an increase in development speed [6].
Using NLP tools is highly beneficial for rapidly prototyping
and cutting the development cycle short [3].

•	 Reinforcement Learning (RL): RL improves decision-
making during software testing by focusing on dynamic
testing and debugging. As a result, RL models can adapt the
test cases according to feedback received during software
execution, and these cases may cover important scenarios

Citation: Bhanuprakash Madupati (2024) AI's Impact on Traditional Software Development. Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-E145.
DOI: doi.org/10.47363/JAICC/2024(3)E145

J Arti Inte & Cloud Comp, 2024 Volume 3(4): 3-7

that are often overlooked in other testing methods [3].

Figure 2: AI in software development

AI Tools in Software Development
AI integration has revolutionized software development through
automated code generation, testing, and debugging, previously
manual processes. These tools facilitate rapid feedback cycles,
minimize the occurrence of errors, and enhance development
efficiency throughout the process.

Table 1: Overview of Traditional SDLC Phases and Key
Challenges
Phase Description Key Challenges
Planning and
Requirement

Gathering
requirements and
creating project
documentation.

Risk of
misalignment with
stakeholders’
expectations.

Design and
Architecture

Developing system
architecture and
design using UML or
similar.

Slow, rigid process;
difficult to adapt to
changes.

Development
(Coding)

Manually code
the software based
on the design
specifications.

Prone to human
errors and delays.

Testing Manual and semi-
automated testing,
focusing on bug
identification.

Time-intensive and
error-prone.

Deployment and
Maintenance

Manual deployment
and ongoing
maintenance.

Sequential and time-
consuming delays in
fixing bugs.

Difficulties of Traditional SDLC
While traditional SDLC provides a structured approach to
software development, it also comes with several challenges:
While traditional SDLC delivers a structured approach to software
development, it also comes with several challenges
•	 Slower Development Cycles: Traditional SDLC is

sequential, which takes longer in the overall development
process. Because each stage must be performed before the
next stage, problems in one stage may influence all aspects
of the project [4].

•	 Difficulty Adapting to Changes: Non-flexible models such
as the Waterfall do not cater to changes in requirements in
midstream. Thus, the project may be suspended, or extensive

modifications may be required in response to a change in
business requirements—both expensive [1].

•	 High Cost of Error Detection and Correction: Many errors
are inserted in the early stages of development and are not
easily identified until the testing or even the deployment
phase, which is costly and time-consuming [3].

Figure 1: AI-Powered Testing Efficiency

This is demonstrated in the following graph, where Test Automation
employs approximately 80% AI, while Software Testing and Test
Management employ only 20% and 40% AI, respectively.

AI in Software Development
AI Technology and its Applications in the SE Discipline
AI is becoming prominent in software development by replacing
traditional human interventions with automation, enhancing
work productivity, and minimizing errors. Three key forms of
AI responsible for this transformation include Machine Learning,
Natural Language Processing, and Reinforcement Learning.
•	 Machine Learning (ML): Deep learning models are widely

applied to improve many aspects of the software development
process, including bug discovery and code enhancement.
These algorithms identify various patterns within the code,
format it, correct it, and even forecast other glitches, making
the code cleaner and more efficient [1,4]. Also, ML plays a
pivotal role in testing in which models estimate which parts
of the codebase are more likely to contain bugs with the help
of historical data to optimize testing procedures [3].

•	 Natural Language Processing (NLP): NLP also involves
code generation using languages such as OpenAI Codex
and GPT-4. They translate instructions in natural language
into code and have become useful in developing tools to
create executable code snippets. This results in a considerable
decrease in the number of hours devoted to completing sets
of codes and allows for an increase in development speed [6].
Using NLP tools is highly beneficial for rapidly prototyping
and cutting the development cycle short [3].

•	 Reinforcement Learning (RL): RL improves decision-
making during software testing by focusing on dynamic
testing and debugging. As a result, RL models can adapt the
test cases according to feedback received during software
execution, and these cases may cover important scenarios
that are often overlooked in other testing methods [3].

Citation: Bhanuprakash Madupati (2024) AI's Impact on Traditional Software Development. Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-E145.
DOI: doi.org/10.47363/JAICC/2024(3)E145

J Arti Inte & Cloud Comp, 2024 Volume 3(4): 4-7

Figure 2: AI in software development

AI Tools in Software Development
AI integration has revolutionized software development through
automated code generation, testing, and debugging, previously
manual processes. These tools facilitate rapid feedback cycles,
minimize the occurrence of errors, and enhance development
efficiency throughout the process.

Table 1: AI Tools in Software Development
AI Tool Application Impact
OpenAI Codex,
GPT-4

Automated code
generation from
natural language

Reduces manual
coding efforts,
accelerates
development speed,
and improves
code quality by
minimizing human
error.

AI Testing
Frameworks

Automated
generation and
execution of test
cases

It improves test
coverage, detects
bugs earlier, and
reduces the manual
effort required for
testing.

AI Debugging Tools Predictive error
detection and
automatic bug fixing

Faster bug
identification,
reduced debugging
time, and enhanced
code reliability
through proactive
fixes.

CI/CD Automation
Tools

Automates
Continuous
Integration/
Deployment
pipelines

It accelerates
deployment cycles,
reduces manual
interventions, and
improves system
stability with
automated rollbacks.

AI-Assisted Code Generation: Current AI models such as
OpenAI Codex and GPT-4 have revolutionized how developers
code. These models can understand natural language inputs and
generate the code themselves, which saves a lot of time. Aside
from the general effects of increasing efficiency and speeding up
development, AI saves time and reduces errors in coding. These
Tools are efficient in large projects, especially when data quality
and consistency are issues [4].

Automated Testing with AI: Computer-aided testing has
revolutionized software testing. These tools use ML algorithms
to forecast where bugs are more probable to exist, produce test
cases, and run the tests themselves. This automation helps lessen
testing efforts and detect key bugs at an earlier stage. Furthermore,
these tools enhance regression testing efficiency since it is
time-consuming and resource-intensive in large-scale software
development projects [3].

Figure 3: AI Software Development Process

Main Technical Effects of AI on Conventional Software
Development
Code Generation
AI greatly revolutionized traditional coding by automating
most parts of the coding process. Applications such as OpenAI
Codex and GPT-4 can take plain English instructions and write
corresponding code. These models minimize coding by performing
repetitive efforts, reviewing templates for coding, and automating
various code works. Therefore, developers can concentrate on
more significant problems like choosing the architecture and
fine-tuning instead of typing codes [4].

AI also plays an important part when it comes to the enhancement
of code quality. Coding is another area where AI can supercharge
the programming process by using data sets containing millions of
prior coding patterns and can generate flawless and efficient code
with low chances of bugs and errors. This is especially important
in extensive software development programs, where cohesion and
productivity are critical. When code generation is incorporated
with AI, the development rates are quicker, and less time is spent
mitigating problems at a later stage [4].

Testing and Quality Assurance (QA)
Testing and QA are considered to be essential stages of SDLC,
and earlier, only manual or partially automated testing techniques
were used. There is a noticeable efficiency enhancement due to AI
automation of most testing procedures. Intelligent testing scripts
can write tests, execute them, and even identify regions that may
potentially contain faults. This approach helps to save a lot of time
than would be used in testing manually and covers many test cases
than would be possible when testing manually [3].

Besides, machine learning models are often employed in regression
testing, which involves using algorithms to determine which parts
of the software are most likely to fail following modification. In
terms of regression testing, which is often performed by developers
who want to ensure that new changes do not affect previous code,
AI shortens the time spent on this process. This makes it possible
to release more system updates frequently without compromising
the integrity of the software [3].

Debugging and Bug Fixing
Debugging can also be improved through the enhancement of
tools that can independently identify and correct errors in the

Citation: Bhanuprakash Madupati (2024) AI's Impact on Traditional Software Development. Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-E145.
DOI: doi.org/10.47363/JAICC/2024(3)E145

J Arti Inte & Cloud Comp, 2024 Volume 3(4): 5-7

code brought about by AI. Conventional debugging paradigms are
highly manual, and programmers spend considerable time trying
to isolate and fix bugs. Automated tools, on the other hand, use
machine learning and predictive analytics to search for bugs in
code repositories and suggest solutions in real time. These tools
minimize the time taken for debugging and hence boost total
productivity, enhancing the development cycle [3].

In addition, predictive models can also identify troublesome
areas mainly because of the patterns identified from previous
completed projects. This allows developers to prevent issues that
may cause more significant problems in the application, as they
can detect them before they become severe errors. Integrating AI
in the debugging process increases the code's reliability levels
and reduces the number of post-deployment bugs, enhancing the
resilience of software systems [3].

Figure 4: Bug fixing in AI-Driven Verification

CI/CD Pipelines
In CI/CD, which stands for Continuous Integration/Continuous
Deployment, AI intervenes by carrying out different steps within
a pipeline. Conventional CI/CD processes entail the supervision
and management of the build, testing, and deployment of code
changes, which are, at times, tedious and vulnerable to human
interventions. AI, on the other hand, speeds up this process of
building, testing, and deploying models by minimizing human
interference [6].

Figure 5: AI in CI/CD Pipelines

The AI models are constantly watching the pipeline; deployments
are done automatically whenever the system notices that there
are stable builds, and even faulty deployments can be rolled back
with feedback from the system itself. This results in shorter cycles
between builds and greatly minimizes the disruption of operations
during the deployment of a new build, giving the development
cycle more fluidity and the ability to adapt to changes. Through
such automation, AI frees up the development teams and enables
them to deliver new features and updates more regularly without
compromising the quality [6].

Case Studies and Applications
Overview of Use of AI in Large-Scale Projects
AI has been implemented in several large projects, and it has
drastically improved the software development processes.
•	 Facebook’s AI-Enhanced Testing Frameworks: Facebook

has incorporated testing AI to help identify bugs as well as
increase the coverage of tests. With the help of machine
learning algorithms, Facebook can analyze which part of the
code is most prone to failures during updates; therefore, the
team can spend more time testing risky sections of the code.
This strategy has significantly decreased the time spent on
traditional testing and enhanced the quality of Facebook's
new releases [3].

•	 Google’s AI-Driven Code Optimization in Cloud
Applications: Auto-optimization: Google has incorporated
AI to identify expensive code within its cloud applications and
provide suggestions on how to improve it. AI models analyze
the code in real-time to identify suboptimal performance
and possible enhancements, which helps Google meet cloud
services performance standards. Through AI, Google’s teams
can concentrate on innovation because efficiently tested and
improved code results from the process [6].

Figure 6: Testing in AI application

AI in Agile Development
It is also finding its way into Agile development environments
characterized by high levels of iteration and the ability to adapt.
Another critical feature of agile development involves delivering
feedback and integrating it in the system at the highest possible
rate, and this is where AI shines by generating code automatically
and testing it [6].

In Agile cycles, AI-driven tools like Codex and GPT-4 come into
play and act as developers by writing code based on user stories
and requirements. This improves the cycle time, enhancing teams’
ability to work in parallel and offer new features at a faster rate [4].
Also, AI-generated testing software also takes the responsibility
of forming test cases for every new element brought in the Agile
model as a feature, which means that quality will not be traded
for speed [3].

Citation: Bhanuprakash Madupati (2024) AI's Impact on Traditional Software Development. Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-E145.
DOI: doi.org/10.47363/JAICC/2024(3)E145

J Arti Inte & Cloud Comp, 2024 Volume 3(4): 6-7

The probability AI provides the identification of potential
bottlenecks in sprints additionally benefits Agile procedures by
enabling project managers to organize resources and development
workloads efficiently.This guarantees that Agile iterations are on
schedule while the chances of an unpredicted holdup are greatly
mitigated [6].

Implications and Threats of AI Implementation in Software
Development
Over-Reliance on AI Systems
Another major concern that has been voiced regarding the
rising use of Artificial Intelligence in software development
is the likelihood of automation of some of the most basic and
crucial duties in software development and management using
AI.Although AI can bring many benefits when applied to the
SDLC by automating and optimizing processes, a reliance on
AI tools may lead to developers becoming less disciplined when
working with their tools.Such dependency may lead to a complete
removal of the human-in-the-loop, where important decisions
are left to the AI models, thus, the likelihood of coming up with
mistakes that might not be realized until some advanced stage of
the development phase is highly likely [4,6].

Dangers of Excessive Dependence: Issues of complacency arise
when developers rely heavily on AI. If most of the AI tools perform
most of the coding and testing, then the developers might become
disoriented with the structures and lack proper knowledge about
the software. This becomes a critical issue in cases where an
AI-generated code might contain seemingly minor defects or
sub-optimal parts that are not easily discernible by the human
brains [4].

Ethical and Bias Concerns
Ethical issues arising from the adoption of AI-driven software
development are as follows
Ethical issues associated with bias in AI models and the impact
of such biased models on society. Machine learning algorithms
trained on data that contain bias are likely to have the same bias
reflected in the code, ending up with biased code recommendations
or testing practices. Such biases can also show up in the output of
software that may create or support processes that result in unfair
or discriminatory end-user consequences [6,7].
•	 Bias in AI-Generated Code: Literally, AI models are trained

with datasets; they learn; if these datasets are biased then
the bias will be reflected in the code that’s written. This is
especially the case with applications where fairness and equity
are paramount, like those in the areas of medical diagnoses
or the administration of justice [4]. Reducing bias entails
the constant assessment of the training datasets used for
developing AI models and the implementation of fairness
tests into software development processes.

•	 Ensuring Fairness and Transparency: This specifically
brings the issue of transparency as one of the vital factors
that need to be considered while trying to avoid biases
during the development of AI models. It is mandatory for
the developers to make sure that the processes, underlying the
code generation and the test automation are comprehensible,
reproducible, and easily auditable. This level of transparency
is required to ensure that people have trust in AI systems
especially in situations where software is used to control
essential infrastructures or even personal information.

Technical Challenges
Incorporating AI into traditional SW development methodologies
also allows for the identification of several technical issues. AI
tools may not be integrated with existing systems, especially where
older systems are used in production lines. Also, AI models are
unable to meet special organizational requirements that entail a
great deal of expertise in using software [1,4].

Compatibility Issues with Legacy Systems: In many industries
today, there are business applications and IT systems that are at
least 10-20 years old and still running.AI models are most often
designed with the use of current systems in mind and may pose
issues when integrated into these systems.AI integration into such
landscapes is often manual and time-consuming, which defeats
the purpose of automation [1].

Inaccuracies in Specific Contexts: Techniques, especially
machine-learning models developed using general datasets, will
likely fail in narrow or specialized industries. For instance, data
sources or systems involved in healthcare or finance have different
regulatory constraints and complex structures compared to other
sectors that may create chaos to the generalized AI models in
coding, testing or deployment solutions [4]. These challenges call
for industry-specific datasets and creation of new AI models [1,4].

Future Prospects
Future of AI in Software Development
As AI progresses in the future, the importance of AI in software
development will increase significantly as it forms the basis for
further development and will change the processes of creating
and maintaining software. Therefore, AI is expected to be a more
prominent part of the software lifecycle in the future with more
tasks of the software lifecycle, such as integration, deployment,
testing or maintenance, being fully or partially automated by 2030.

Artificial Intelligence Transforming Development by 2030:
While current uses of AI in software development involve mostly
code creation and bug identification, these capabilities will
progress to encompass additional elements of software design
and project organization. This could lead to the creation of self-
evolvable systems, in which software programs are capable of
evolving themselves depending on predefined parameters such
as performance, and feedback from users.

Emerging Technologies: New technologies like quantum
computing and 5G will shape the future of AI-driven software
development. Of these emerging technologies, quantum computing,
in particular, has the potential of directly boosting the speed of
AI algorithms and their ability to improve their performance by
analyzing larger sets of data and completing computations at a
much faster rate. This could mean that software and applications
could become far more efficient, reliable, and powerful with
increased scalability.

Conclusion
•	 AI's Impact on Software Development: AI has significantly

influenced traditional software development practices by
automating code generation, testing, debugging, and
deployment processes.This automation has helped to increase
the speed of development, reduced oerative errors, and
improved quality of generated software.

•	 Balancing Human Oversight and AI Autonomy: However,
it is crucial to strike a delicate balance between human
supervision and the use of artificial intelligence tools.One

Citation: Bhanuprakash Madupati (2024) AI's Impact on Traditional Software Development. Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-E145.
DOI: doi.org/10.47363/JAICC/2024(3)E145

J Arti Inte & Cloud Comp, 2024 Volume 3(4): 7-7

disadvantage of using AI is that errors or ethical issues can
be overlooked if reliance on the technology is excessive.

•	 Addressing Ethical and Technical Challenges: Some of the
current obstacles include ethical issues, where AI is capable
of writing its own code with some level of bias, and technical
constraints where integration with other systems, especially
outdated ones, may pose a challenge in the employment of
AI all throughout the process of the software development
life cycle.

•	 Future Prospects for AI in Software Development: Moving
ahead, the role of AI in the software implementation process
will only increase and as technologies like quantum computers
come into the software development process, the use of AI is
only going to increase.AI is to become a critical component of
architecture design as well as a system that will be in charge
of creating and maintaining software programs by 2030.

References
1.	 Tedre M, Toivonen A, Kahm T, Vartiainen H (2021) Teaching

Machine Learning in K–12 Classroom: Pedagogical and
Technological Trajectories for Artificial Intelligence
Education. IEEE Access 9: 110558-110572.

2.	 Bayrı V, Demirel E (2023) AI-Powered Software Testing: The
Impact of Large Language Models on Testing Methodologies.
IEEE International Conference on Information and Software
Engineering (IISec). 10.1109/iisec59749.2023.10391027.

3.	 Shi Y, Sakib N, Shahriar H, Lo D, Chi H, et al. (2023) AI-
Assisted Security: A Step Towards Reimagining Software
Development for a Safer Future. IEEE Int Computers,
Software & Applications Conf (COMPSAC). doi: 10.1109/
compsac57700.2023.00142.

4.	 Petrov P, Buy U, Nord RL (2012) Enhancing the software
architecture analysis and design process with inferred macro-
architectural requirements. IEEE Int Workshop Twin Peaks
of Requirements and Architecture (TwinPeaks) pp: 20-26.

5.	 Khan AA, Akbar MA, Fahmideh M, Shahriar H, Choudhury
MA (2023) AI Ethics: An Empirical Study on the Views of
Practitioners and Lawmakers. IEEE Trans Comput Soc Syst
10: 2971-2984.

6.	 Riesco D, Montejano G, Debnath N, Cota MP (2009)
Formalizing the Management Automation with Workflow
of Software Development Process Based on the SPEM
Activities View. IEEE Int Conf Information Technology:
New Generations (ITNG) pp: 131-136.

7.	 Yang CC, Domeniconi G, Zhang L, Cong G (2020) Design
of AI-Enhanced Drug Lead Optimization Workflow for HPC
and Cloud. IEEE Int Conf Big Data (Big Data) pp: 5861-5863.

Copyright: ©2024 Bhanuprakash Madupati. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

