
J Eng App Sci Technol, 2023 Volume 5(2): 1-5

Review Article Open Access

Achieving Concurrency Control: Practical Throttling Techniques for
AWS Lambda

Senior Lead Software Engineer, Richmond, VA, USA

Balasubrahmanya Balakrishna

Journal of Engineering and Applied
Sciences Technology

ISSN: 2634 - 8853

*Corresponding author
Balasubrahmanya Balakrishna, Senior Lead Software Engineer, Richmond, VA, USA.

Received: April 04, 2023; Accepted: April 15, 2023; Published: April 22, 2023

ABSTRACT
This technical paper explores nuanced approaches for managing concurrency in Lambda functions, shedding light on the intricacies of AWS services like
SQS and Kinesis. It underscores the significance of reserved concurrency to regulate function execution, acknowledging its effectiveness while cautioning
about its limitations, particularly in scenarios requiring scalable solutions. The focus extends to the advantages of SQS as a pull-based service, emphasizing
its built-in concurrency control and dynamic scalability capabilities.

The paper then delves further into Kinesis data streams, showcasing the distinctive architecture of shard-based scaling and introducing parallelization
factors for precise control over Lambda concurrency. Notably, these concurrency control strategies are presented as a means to scale Lambda and as a
mechanism to manage traffic downstream, considering potential technical constraints.

The discussion highlights multiple factors in selecting an appropriate messaging service: cost, message replay capability, error-handling mechanisms, message
processing order, and concurrency management. Collectively, these insights serve as a comprehensive reference for architects and developers striving to
create efficient and scalable serverless applications within the AWS environment, addressing Lambda scalability and downstream traffic control challenges.

Keywords: Reserved Concurrency, Lambda Concurrency Control,
SQS, SNS, Kinesis, AWS Lambda function, Event Source Mapping

Introduction
Designed for scalability, AWS Lambda incorporates built-in auto-
scaling capabilities. Because of its intrinsic scalability, it is ideal
for real-time message-processing scenarios. For example, it is
useful when the goal is to distribute messages to many workers,
hence increasing our system's throughput.

Figure 1: Lambda and AutoScaling

If we need to communicate with a downstream, as shown in
Figure 2, a system that has scalability limitations is susceptible
to increased loads and has the potential to cause system outages.

Also, we must restrict the concurrent request to downstream
service for any reason. In that case, the question becomes: How
can we systematically govern the concurrency of our Lambda
function to avoid such issues?

Figure 2: Lambda Interacting with Constraint Downstream

Background
A regional concurrency restriction governs Lambda, dictating the
maximum number of concurrent instances of Lambda functions,
as shown in Figure 3. Regional concurrency soft limit increase
can happen by raising a service ticket with AWS.

Citation: Balasubrahmanya Balakrishna (2023) Achieving Concurrency Control: Practical Throttling Techniques for AWS Lambda. Journal of Engineering and Applied
Sciences Technology. SRC/JEAST-291. DOI: doi.org/10.47363/JEAST/2023(5)204

 Volume 5(2): 2-5J Eng App Sci Technol, 2023

Each function invocation depletes one unit of concurrency for
the duration of the event. When many Lambda invocations run
concurrently, all available concurrency units can be exhausting.
As a result, each subsequent invocation that exceeds the available
concurrent limitation will be throttled, posing a severe problem,
particularly for Lambda functions deemed mission-critical.

Figure 3: Regional Concurrency Pool and Lambda with Reserved
Concurrency

Fine-Tune AWS Lambda Concurrency: Effective Control
Strategies
Concurrency Control Through Reserved Concurrency
The most straightforward method for controlling the concurrency
of a Lambda function uses the built-in reserved concurrency
mechanism.

Reserved concurrency designates a portion of regional concurrency
units for a specific function. This allocation ensures that the
specified function always has a reserved concurrency capacity
for execution. However, it is crucial to note that these reserved
concurrency units are withdrawn from the regional pool, reducing
the overall concurrency resources available to other services when
they require scaling on demand.

Notably, reserved concurrency serves a dual purpose as it also acts
as the maximum concurrency threshold, enabling the throttling
of concurrent executions of a Lambda function. While setting
reserved concurrency is a fundamental and economical approach,
it has the following limitations:

1.	 Deploying reserved concurrency across many functions, in
particular, generates incremental consumption of available
regional concurrency units. This cumulative effect can reduce
the regional pool of concurrency resources.

2.	 Over time, functions requiring dynamic or on-demand
scalability might encounter issues with insufficient
concurrency. Inefficiently distributing concurrent units can
lead to throttling several invocations, as depicted in Figure 4.
Reserved concurrency works well for isolated concerns, and
improving scalability becomes crucial as a growing number
of functions need concurrency control.

Figure 4: Regional Concurrency Pool, Lambda with Reserved
Concurrency and On-demand Traffic Throttling

3. Reserved Concurrency for Lambdas places in a situation that
necessitates meticulous oversight of Lambda agreements, an
undesirable responsibility likely to be challenging to execute
effectively.

Other Approaches to Control Concurrency
Premise
The preferred strategy would be to take advantage of the natural
scaling characteristics of Lambda and its event sources. Specific
event sources, particularly those requiring polling techniques like
SQS and Kinesis, can be configured via event source mapping.
These sources have integrated concurrency control techniques,
which eliminates the need for human management.

Figure 5: Messaging Service Interaction with Lambda

Citation: Balasubrahmanya Balakrishna (2023) Achieving Concurrency Control: Practical Throttling Techniques for AWS Lambda. Journal of Engineering and Applied
Sciences Technology. SRC/JEAST-291. DOI: doi.org/10.47363/JEAST/2023(5)204

 Volume 5(2): 3-5J Eng App Sci Technol, 2023

Concurrency Control: AWS SNS and AWS EventBridge
When asynchronous event sources like SNS and EventBridge
receive a message, they immediately attempt to activate a
subscriber function [1]. As a result, the function's concurrency
increases linearly in tandem with the rate of incoming messages, as
depicted in Figure 5 and Figure 6. Assigning reserved concurrency
to the function can alter this trajectory.

Figure 6: Lambda Concurrency Vs Messages/s for SNS and
EventBridge

Concurrency Control: AWS SQS
Conversely, in scenarios where SNS or EventBridge is not
mandatory, SQS emerges as a compelling alternative for message
ingestion and processing with Lambda [2]. SQS requiring fewer
invocations to process an equivalent number of messages, coupled
with its inherent concurrency control features, underscores this
preference.

Notably, SQS, being a pull-based service, leverages a cluster of
pollers managed by the Lambda service [3]. These pollers actively
retrieve messages from the queue and transmit them to the function
in batch operations. Upon completion of the function invocation,
the poller removes the processed messages from the queue. The
initial configuration starts with five pollers, facilitating up to 5
concurrent function invocations. Depending on the backlog of
messages, the Lambda service dynamically scales the pollers,
incrementing by up to 60 instances per minute, with a maximum
concurrency cap set at 1000. Each poller independently invokes
the associated function, establishing a 1-to-1 mapping between
the number of pollers and concurrent function invocations, as
shown in Figure 7.

Figure 7: Concurrency Relation: SQS and Lambda

The built-in batching method limit the scaling capacity of pollers
to an increment of 60 instances per minute. As a result, in contrast
to the quick scaling witnessed in SNS and EventBridge cases,
the concurrent augmentation for the function is more gradual, as
seen in Figure 8.

Figure 8: Concurrency Vs. Messages/s Comparison: SNS,
EventBridge, and SQS

Configuring the MaximumConcurrency parameter in the event
source mapping under ScalingConfig allows the set of an upper
limit on poller concurrency. This parameter is associated with an
integer value representing the specified maximum concurrency.
This setting is a practical approach to overseeing an SQS function's
concurrency management.

Figure 9: AWS CLI to set MaximumConcurrency

Because of the possible issue known as SQS over-polling, it is
not advised to use reserved concurrency in conjunction with an
SQS function. This problem develops when there is a mismatch
between the function's reserve concurrency setting and the
poller's concurrency. Exceeding the limit imposed by the reserve
concurrency setting will result in throttling invocations, as shown
in Figure 10.

SQS messages are returned to the queue via throttling without
being processed by the relevant function. Moreover, the system
passes certain messages to the dead letter queue without
the function processing them if a dead letter queue (DLQ) is
configured and throttling continues. This issue could be mitigated
by MaximumConcurrency, setting on the event source mapping,
not on the Lambda function.

Figure 10: SQS Overpolling

aws lambda update-event-source-mapping \
 --uuid "a1b2c3d4-5678-99ab-cdef-11111FOOBAR" \
 --scaling-config '{"MaximumConcurrency":5}'

Citation: Balasubrahmanya Balakrishna (2023) Achieving Concurrency Control: Practical Throttling Techniques for AWS Lambda. Journal of Engineering and Applied
Sciences Technology. SRC/JEAST-291. DOI: doi.org/10.47363/JEAST/2023(5)204

 Volume 5(2): 4-5J Eng App Sci Technol, 2023

Concurrency Control: AWS Kinesis Data Streams
To wrap up our investigation, let us look at Kinesis data streams,
a polling-based service similar to SQS that allows batching [4].
The Lambda service, like SQS, orchestrates a cluster of pollers
on our behalf at no extra expense.

Increasing the number of shards in the data stream distinguishes
Kinesis due to its scalability. A poller is assigned to each shard,
establishing a 1-to-1 ratio between shards and pollers, as shown in
Figure 11. Each poller individually invokes a function, ensuring a
1-to-1 ratio between the number of shards and concurrent Lambda
invocations. This architecture highlights a clear link between the
scaling of Kinesis data streams and the concurrent execution of
Lambda functions.

Figure 11: Concurrency Relation: Kinesis and Lambda

However, it is essential to clarify this assumption-
ParallelizationFactor within the event source mapping for a
Kinesis function, ranging from 1 to 10. This factor dictates that
pollers process messages from the same shard simultaneously.
Importantly, this rule applies while preserving the ordering of
messages based on the partition key.

Figure 12: AWS CLI to Set ParallelizationFactor

As a result, the correlation between Kinesis shards and Lambda
concurrency varies between 1-to-1 and 1-to-10, depending on the
configuration used, as shown in Figure 13.

Figure 13: Kinesis Shards and Lambda Concurrency Varies
between 1-to-1 and 1-to-10

When ParallelizationFactor equals 1 for a Kinesis function,
the function's concurrency gradually increases. In contrast,
concurrency can grow faster when a ParallelizationFactor
equals 10. The essential component is the accuracy provided
by this method, which allows for precise control over Lambda
concurrency by adjusting the number of shards in the Kinesis
data stream.

Figure 14: Concurrency Vs. Messages/s Comparison: SNS,
EventBridge, SQS, Kinesis

Conclusion
However, concurrency management is only one factor when
deciding which messaging services to use in AWS whenever
we need to protect the downstream with overwhelming requests
from Lambda functions, or we need to control the concurrent
invocation of Lambda. Other aspects include cost implications,
message replay feature support, error handling and retry system
evaluation, and message processing order adherence. A complete
table describing essential considerations to help select the best
messaging service for serverless applications is as follows:

Kenisis SQS SNS EventBridge
Subscribers 1:N 1:1 1:N 1:N
Ordering By shard None (standard)

By group (FIFO)
None None

Replay event 1-365 days Batched (upto 10) Singular Singular
Retry Retry until

success + DLQ
Retry + DLQ Retry + DLQ Retry + DLQ

Concurrency 1-10/shard auto-scale fan-out fan-out

aws lambda create-event-source-mapping -
-function-name my-function \
--parallelization-factor 2 --batch-size 50 -
-starting-position AT_TIMESTAMP -
-starting-position-timestamp 1541139178 \
--event-source-arn arn:aws:kinesis:us-east-
2:123456789099:stream/lambda-stream

Citation: Balasubrahmanya Balakrishna (2023) Achieving Concurrency Control: Practical Throttling Techniques for AWS Lambda. Journal of Engineering and Applied
Sciences Technology. SRC/JEAST-291. DOI: doi.org/10.47363/JEAST/2023(5)204

 Volume 5(2): 5-5J Eng App Sci Technol, 2023

Copyright: ©2023 Balasubrahmanya Balakrishna. This is an open-access
article distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

References
1.	 AWS (n.d) (2024) What is Amazon SNS? Amazon Simple

Notification Service.
	 https://docs.aws.amazon.com/sns/latest/dg/welcome.html.
2.	 Julian Wood (2023) Introducing maximum concurrency of

AWS Lambda functions when using Amazon SQS as an
event source. AWS Compute Blog. AWS https://aws.amazon.
com/blogs/compute/introducing-maximum-concurrency-of-
aws-lambda-functions-when-using-amazon-sqs-as-an-event-
source/.

	
	

3.	 Tushar Sharma, Shaun Wang (2023) Understanding Amazon
SQS and AWS Lambda Event Source Mapping for Efficient
Message Processing. AWS Partner Network (APN) Blog.
AWS https://aws.amazon.com/blogs/apn/understanding-
amazon-sqs-and-aws-lambda-event-source-mapping-for-
efficient-message-processing/.

4.	 Moheeb Zara (2019) New AWS Lambda scaling controls
for Kinesis and DynamoDB event sources. AWS Compute
Blog. AWS https://aws.amazon.com/blogs/compute/new-
aws-lambda-scaling-controls-for-kinesis-and-dynamodb-
event-sources/.

