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speed, gravitational potential        and proper time interval  

                                                                                                                      . 

Similarly for the EM field we use            ,               , such that

Introduction
The Newtonian system needs a basis for concepts such as velocity, 
acceleration etc. relative to which these concepts are well-defined.  
It is a matter of difficulty to discover and distinguish true motions 
of particular bodies from the apparent, because the parts of the 
immovable space in which those motions are performed, do by no 
means come under the observation of our senses.  If every motion 
is relative and everything in the world is in motion, a question 
arises according to Newton: how can one ever set up a determinate 
theory of motion?  So, he introduced the concepts of absolute time 
and absolute space and deduced the law of gravitation: the inverse 
square law.  The theory was not well received even in Newton’s 
own university of Cambridge; the inverse square law without 
modifications lead to an elliptic orbit [5]. It is observed that the 
orbit of the planet Mercury is not exactly elliptic [2,3,5] but a 

rotating ellipse such that the major axis advances by 42 seconds of 
arc per century.  The special theory of relativity was introduced, in 
order to remove some of the observational difficulties in electro-
magnetism.  Thus, the concepts of local time and proper time 
emerged; we shall use these according to Lorentz’ interpretation 
[6-9,10-13]. Still there are some weaknesses; we come across 
relations such as                                      (a) and 
(b) [2,3,9,14,15]. These two equations imply
so that                 and              or         and            , except for an
additive constant which can hold according to Newtonian concepts 
only [9, 12].   This means equation (b) is invalid.  The inconsistency 
between the primed and unprimed coordinates can be removed by 
replacing the primed quantities in favour of the proper coordinates
              . Thus, we have                                and                              .

These two equations can be rewritten as

(c) and                              (d).

Thus, the inconsistency between equations (a) and (b) have been 
removed by dispensing with the primed coordinates.  The former 
defines the proper time interval and the latter implies contraction 
hypothesis [6, 7, 9, 10, 12].  These clearly show that the equation
                        with             is impossible. Thus, by replacing
the primed coordinates by the proper values               where dτ, dxτ 
are the proper values estimated from           , the use of the primed 
coordinates is invalid in the relativistic sense. Hence the assertion, 
that the primed coordinates                and the unprimed coordinates             
(cdt,dx) are equally valid inertial space time coordinates, is invalid 
due to the pseudo-Euclidean nature of space-time. On the other 
hand, the Lorentz Transformation can be interpreted as a general 
form of Dopplershift and Aberration formulae and hence the proper 
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ABSTRACT
In this paper, a new mass-velocity relation                         is derived.  The orbit of planetary motion is deduced based on this new relation and the Newtonian 
laws of motion along with the concept of proper time.  The derivation does not use the tensor concept, but the relativistic orbit                          is obtained 
as a first approximation of the modified Newtonian theory.  Next, we discuss the possibility of introducing a field dependent metric for the EM field by 
considering the observation that E2- c2 B2 or E2- B2 with c = 1 is approximately an invariant quantity for EM Field [1-3]. It is possible to extend the metric for 
the gravitational case also [4].  The discussion of anomalous characteristic of Lorentz Transformation (LT) and the introduction of a non-linear transformation 
connecting Local Space-time coordinates (ct,x)  with proper system             is continued.
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frame               is the unique preferred frame. 

Relation Between        and  
The simplest transformation between local and proper space time 
coordinates may be taken as

                                                    (i)

                                                    (ii)

The inverse transformation is                                              (iii)

                                                  (iv)

These equations represent the transformation between the proper 
system             and the local system           This can be generalised 

to 3+1-dimensional case by including            ,              The 
geometrical representation of            is as follows. We can 

represent the rectangular hyperbola of equation (i),

in the ct‒x plane, for a constant value of τ.  Let it’s vertex be

              ; erect the tangent at vertex             , cutting the conjugate/
orthogonal hyperbola                  (ii) at the point W            for 
constant value of               . Now VW represents xτ and OV represents 
cτ, where O is the origin of coordinates of the local frame.

Field Dependent Metric for EM Field/Gravitational Field
The matrix of LT for               space to              space is given by

where e stands for                     is the speed of apparent relative 

motion and c is the maximum signal velocity of the gravitational 
field in the discussion. Similarly, c is signal velocity of the EM 
field when we consider EM Fields [1, 16].  In the general case of 
3⊕1 dimensions, the Lorentz matrix can be given by

implies

                                                                                             .  
By letting     

(i)

(ii)                                              and

(iii)(a)                                             , (two distinct cases) we see 
that L can handle accelerated motion of           relative to        and 
the metric is pseudo-Euclidean but not non-Euclidean as in GTR.   

The GTR excludes the possibility of a parallel theory for the 
motion of mass particles and charged particles by highlighting 
the observation that the energy momentum tensor of EM field 
has a vanishing trace.  On the other hand, the vector fields can be 
generalized by means of contracted tensor fields. 

We have the constitutive relations               and                for EM 
fields [1,2,1315,16]. We shall modify the vectors E2 and H2 by 
means of contracted tensor fields. We know that the metric in 
tensor calculus is given by
where       is a (0, 2) tensor and              are the covariant and 
contra-variant components of the same vector [17].  

Keeping these ideas in view, let us introduce, for the gravitational 
field, two reciprocal/conjugate tensors     and       so that 
                    we define                and                as the covariant
 
and contra-variant components of E.

Now                                                 and

                                           hence

Similarly, we introduce two reciprocal/conjugate tensors      and
      so that                  we define                and

as the covariant and contra-variant components of H

Also                                                and

                                                  . Therefore                                   .

Hence our tensors have the properties that

(i         and     are reciprocal tensors
(ii)       and    are reciprocal tensors
(iii      ’s and μ’s are the dielectric parameter     and the susceptibility  
μ1, for gravitational fields and           for EM fields by extending 
the Maxwell-Lorentz theory to gravitational fields [17].

Thus for an infinitesimal region, it is possible to replace vector-
fields by means of contracted tensor fields and the metric
                (with          )                                          is a metric for the

EM field. Similarly we can form the metric                 with (c=1)
                                    for the gravitation field by changing      

and     to     and      with corresponding definitions given above. 

Characteristic of LT
The LT equations satisfy
                                        (2.1)

                                        (2.2)
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Both (1) and (2) represent rectangular hyperbolas (RH).

By using the substitution

                                                    (2.3)     (      axis)

                                                                                                                                                                                                                                                                                                            
                                                                     (       axis)                                   
 
the equation (2.1) becomes (2.2).  A question arises at this stage:  
do P’           and P          represent points on two different RH in 

accordance with different time access as shown in Figure 1 or 
do they represent two points on the same RH and have the same 
time-axis, having two separate origins          or coincident origins
         or two nearby RH’s with time axis distinct but inclined to each 
other at a small angle intersecting at the common world point (00).

We consider the following facts (see Figure 1).  Equation (2.3) 
represents the     - axis and (2.4) represents the    -axis.  The slope 

of these lines are    and e respectively where                          

If  θ is inclination of ct'-axis with ct - axis, then tan θ =e and 

slope of x ‒ axis

Figure 1

                   has inclination           and hence                 and  
                
                are inclined at           Therefore when (ct, x) axes are 

orthogonal, (ct′, x′) are not orthogonal and vice versa.  Since   
 
                                                            . We have the relation 

between the areal elements: 

                                                               where we used

        and

i.e.                                                (2.5)

The asymmetric nature of equation (2.5) reveals that there is no 
logic in stipulating that the LT represents the motion of O' relatively 
to O along a common x-axis.  Figure 1 indicates that (ct,x) world 
point is a preferred representation to          the converse is true by 
re-drawing the figure and considering the inverse transformation. 
Thus, the LT implies that one or the other frame of reference is 
not a preferred one justifying the Lorentzian interpretation of a 
preferred frame.  Hence the relativistic conclusion that there is 

no preferred frame of reference, is logically invalid; so is the 
assumption of a common 

Mass - Velocity Relations
For a free particle, the Lagrangian L* and the Hamiltonian H 
represent the energy, one in the moving frame of the particle, 
and the other in the laboratory frame of the observer.  Hence it is 
possible that both can be expressed in the form mc2 where m is 
a function of the velocity   of the particle.  This is done by using 
the defining equations in classical dynamics, namely,

                                                          (2.1.1)

and   

                                                          (2.1.2)

Thus, by letting                              in (2.1.1) and taking valong 
x-axis, we have
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By defining                          it is seen that (2.1.2) is satisfied.  It 

can be similarly shown that the Lorentzian mass given by [1,15]  
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can be obtained from (2.1.2) and the assumption. mc2 = g(v) m0 
c2. Thus, there are two possible mass-velocity relations, given 
by (2.1.3) and (2.1.4); we shall use the former in the following 
discussion.
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Theory
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discarding              But
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This is the equation for planetary motion [1,15] in which we have 
used the local time interval dt.  Next, we shall use the proper time 
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to proceed as follows:
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i.e.                                                                                         (3.1.17)   

                                                                                         (3.1.18)

Letting            and omitting higher powers (3.1.18) yields

                                                         where
      

i.e.                                                                                      (3.1.19)

Differentiating (3.1.19) wrt θ and cancelling           we get

  
                                                                                         (3.1.20)

This is only an approximate result obtainable from (3.1.18); it 
is the equation of planetary motion given in books on general 
relativity but Einstein’s GTR is refuted by M.W. Evans [14]. 
Replacing     by the reduced mass     of the Sun-planet system, we 
get the orbit of the two-body problem; this replacement has the 
advantage that the masses of the two bodies are involved in the 
reduced mass.  By omitting the term 3mu2  in (3.1.20) the orbit is 
an ellipse, if we do not omit it then the orbit is a precessing ellipse, 
the major axis of the ellipse rotating about a central point.  Since 
circles and ellipses are special cases of trochoids, the epi-cycloid/
hypo-cycloid is a possible orbit obtainable from (3.1.18). This 
possibility is examined in the next section.

Motion in a Epicycloid/Hypocyloid
Consider two concentric circles with centre O and constant radii 
R + aand R − a.  In the figure OC = R, OS = R − a, OB = R + a 
and SC = CB = a

Consider a circle of diameter 2a resting initially with its horizontal 
diameter having endpoints P0 and Q0 touching the inner circle 
and the larger outer circle of radii R – a and R + a at P0 and Q0. 

Assume that this circle rolls with constant angular 

speed                   At time tP0Q0 takes the position PQ. θ and ϕ 

are as shown in the figure. Arc SP = Arc SP0i.e.                       or

                 or                since              and                           CP has 

inclination and                           Since OC = R and CP = a we 

have    

                                                         Also 

Projection of SP on horizontal

Projection of SP on vertical line

Let P = (x, y) relative to OP0Q0X  as x-axis and OY perpendicular 
to Ox as y-axis.

                        + Projection of SP on horizontal.

                                     (3.2.1)

Similarly

                                   (3.2.2)

                                            (3.2.3)

                                              is not a constant.  Its areal velocity 
is not a constant relative to fixed axes Ox, Oy. Draw OP′ 
perpendicular to BP or parallel to SP and Oy′ perpendicular to 
OP′ or parallel to BP.  Relative to the axes OP′x′, Oy′ we have

Since                      and

                           (3.2.4) 
                           (3.2.5)
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                                                           (3.2.6)

Therefore, P lies on the ellipse (3.2.6)

say (a constant)

                                (3.2.7)

where                         i.e areal velocity is a constant; hence P has 

a central acceleration towards O and there is no transverse 

acceleration.  From (3.2.7), by letting           we have

and

                                                                               (3.2.8)

But

where A and B are constants.  (3.2.8) and (3.2.9) imply

                                            or                                                                                              (3.2.10)

Differentiating (3.2.10) wrt ψ and dividing the result by

we get

                                                        or                                   

                                                                                         (3.2.11)

But                           implies

and

i.e. radial acceleration = ‒ b2r  and transverse acceleration is zero 
in x'y' co-ordinates but not zero in the xy co-ordinates.

Therefore, P has a trochoidal motion relative to fixed axes (Ox, 
Oy) and a harmonic oscillation as  a precessing ellipse, relative 
to (Ox′, Oy′)

Deduction of Helmoltz’ Equation                           from 
Newtonian Theory

The Poisson’s equation is                        (3.3.1)

This equation will turn into Helmotz’ equation provided we can 
show that                 we shall prove this.

The fast-revolving leaves of a fan cannot be distinguished, but has 
the appearance of a circular disc. Similarly, the vibrating spherical 
membrane has the appearance of a cloud within a spherical shell.  
Assuming that an electron has the appearance of a cloud within 
spherical shell of radius r and thickness Δr , the average electron 
mass/charge density ρ must satisfy the condition

or                  . But the potential due to nucleus of mass M/charge 

Q at a distance r is given by                with usual notations.  

Using the value of M/Q from the latter in the former we have

                                         i.e.                               (3.3.2)  

where                              . Using equation (3.3.2) in equation 

(3.3.1), this equation (3.3.1) becomes Helmoltz’ Equation. To 

satisfy                           , we may use Bohr’s choice:  

                                        so that             where             

 and                          Thus, we get Helmoltz’ equation
                                     

(3.3.3)

Next, we show that (3.3.3) is consistent with Newtonian Theory.  
The filiform [5] solutions i.e. solutions which are zero everywhere, 
except at points very close to a space curve of the Helmoltz’ wave 
equation

                                 (3.3.4)

are the null geodesics of the metric for which line element is

                                       (3.3.5)

It is readily shown that the null geodesics of this metric are curves 
which satisfy the Newtonian equation,

                                  (3.3.6)

From Debroglie’s wave theory, we have             and

so that (3.3.4) becomes                        or                            (3.3.7) 
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By taking                        in (3.3.7) we get Helmoltz’ equation (3.3.3).  

Hence (3.3.4) is the wave equation associated with the Newtonian 
equation (3.3.6) and                            is the associated wave 
function.

The De Broglie’s equation and Schrodinger’s equation can be 
deduced from Helmoltz’ equation. We have                       (3.3.3).

This can be re-written as                                   since  

                                 in de Broglie theory, i.e

(3.3.8). Multiply this by           we get

i.e.                                                             i.e.

                                         (3.3.8)

This is De Broglie’s equation / Klein-Gordon equation.

Equation (3.3.3) can be re-written as                                                (3.3.3′), 

by using the condition of Hamiltonian energy,

and          . Multiplying (3.3.3′) by         and letting   
and we have

i.e.                          (3.3.9)

Since                imply                , we have                                    .  

Therefore equation (3.3.9) becomes Schrodinger’s equation:

                                                                (3.3.10)

Conclusions
Schrodinger’s equation and Broglie’s equation / Klein-Gordon 
equation can be deduced from Helmoltz’ equation which can be 
deduced from Newtonian premises.  An elliptic orbit, relative to 
set of axes Ox', Oy' need not be an elliptic orbit relative to another 
set of axes Ox, Oy.  It is possible to introduce a field dependent 
metric for EM fields; this can be extended to gravitational fields 
also [4].  The primed and unprimed set of co-ordinates involved 
in the Lorentz’ transformation are not equally inertial; one set is 
a preferred set to the other. The exact preferred frame is the one 
having                  as coordinates where             and           .  
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