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Introduction
Ribonucleic acid (RNA) consists of a sequence of nucleotides: 
Adenine (A), Cytosine (C), Guanine (G), and Uracil (U). Within 
the cell, RNA molecules play crucial roles in diverse biological 
processes. While its initial well-known function involves 
transporting genetic information from DNA to proteins, it has 
been found to perform numerous other functions. Notably, the 
discovery of novel RNA classes, such as non-coding RNAs, like 
small nuclear RNAs (snRNAs), has expanded our understanding. 
These snRNAs combine with proteins to form small nuclear 
ribonucleoproteins (snRNPs) involved in RNA splicing. In general, 
an RNA molecule’s function is intricately tied to its structures, 
particularly its secondary and tertiary structures [1-5].

When seeking molecular structures, the final step involves 
predicting the three-dimensional shape of the molecule. Achieving 
high-precision predictions, especially for large RNA molecules 
with only their primary structure as information, remains a 
formidable challenge. Conventional physical techniques like 
X-Ray, Crystallography, and Nuclear Magnetic Resonance are 
not only expensive but also demand significant effort and time [6]. 
Consequently, RNA structure prediction has emerged as a vital 
area of interest for researchers and one of the foremost challenges 
in the field of bioinformatics.

RNA Structures
Primary, Secondary and Tertiary Structure
The RNA molecule exhibits a hierarchical organization with three 
structural levels: the primary structure, secondary structure, and 
tertiary structure [7]. The distinct functions of RNA are often 
revealed by analyzing its complex structures, particularly its 
secondary and tertiary structures [5] (see Figure 1).

Primary structure
The primary structure of Ribonucleic acid (RNA) comprises a 
series of nucleotides, which include Adenine (A), Cytosine (C), 
Guanine (G), and Uracil (U), linked together by phosphodiester 
bonds. This series is commonly referred to as the RNA sequence 
or RNA primary structure [8] (as illustrated in Figure 1.1).

Secondary structure
The secondary structure of an RNA sequence arises when the RNA 
strand folds on itself, by establishing hydrogen bonds between 
G-C, A-U, and G-U base pairs [1] (see Figure 1.2). Predicting 
RNA secondary structure involves determining these hydrogen 
bonds in an RNA molecule solely from its primary sequence. RNA 
secondary structure encompasses various elements, including 
stacked pairs or stems, hairpin loops, multi-branched loops, 
internal loops, bulge loops, and a more complex components 
known as a pseudoknot [8].
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Tertiary Structure or Three-Dimensional (3D) Structure
The RNA tertiary structure refers to the spatial or three-
dimensional organization of RNA components (see Figure 1.3), 
encompassing helical duplexes, triple-stranded structures, and 
various components interconnected by a set of interactions known 
as RNA tertiary interactions [9].

Figure 1: The Three Levels of RNA Structure

RNA Structures Prediction Approaches and Algorithms
RNA structures determination plays a vital role in addressing 
various challenges associated with understanding the RNA 
physical structure, including deciphering the three-dimensional 
arrangement and interpreting the biochemical functions of these 
molecules [5].

The utilization of experimental techniques such as Crystallography, 
X-Ray, and Nuclear Magnetic Resonance for RNA structure 
determination necessitates significant financial resources, 
substantial effort, and a substantial time commitment [6]. In 
response, bioinformaticians have introduced diverse methods 
and algorithms as an alternative approach to predict secondary 
and tertiary structures using various strategies.

In this section, we will shed light on the most commonly used 
approaches for predicting RNA secondary and tertiary structures. 

• RNA Secondary Structure Prediction 
The process of RNA folding is typically hierarchical, with local 
interactions taking precedence and being energetically more 
significant than tertiary interactions [10-11]. As a result, the RNA 
secondary structure serves as a foundational framework for its 
native 3D structure, and it can be predicted without requiring 
knowledge of tertiary interactions. 

Over the past three decades, numerous methods have been 
developed for predicting RNA secondary structure. These methods 
can be categorized into three groups: Dynamic Programming 
Approach (DPA), Soft Computing (SC), and Comparative 
Approach (CA). In the subsequent sections, we will offer a concise 
overview of these approaches.

• Dynamic Programming Approach (DPA) 
Dynamic Programming (DPA) operates on the concept of 
breaking down a complex problem into smaller sub problems. 
By integrating this concept with the principle of minimizing 
free energy, numerous algorithms have been developed for RNA 
structure prediction. According to the free energy minimization 
principle, the structure of an RNA sequence can be the most stable 
one with the lowest free energy. The most fundamental dynamic 
programming algorithms generate basic secondary structures 
without pseudoknot component. Typically, these algorithms face 
challenges due to their significant time and space complexities 
[8]. Nussinov et al. introduced the initial algorithm for RNA 
secondary structure prediction, grounded in the concept of 

minimizing free energy [12]. The objective of this algorithm is 
to maximize the number of base pairs to achieve minimal free 
energy. The computational time complexity for this algorithm is 
O(n^3). Subsequently, Zuker presented a well-known algorithm, 
known as Mfold, for predicting RNA secondary structures without 
considering pseudoknots [13]. This program forecasts secondary 
structures by minimizing free energy, based on the thermodynamic 
model proposed by Tinoco in [14]. 

Table 1: Summarize the Major Programming Dynamic 
Methods Implemented to Predict RNA Secondary Structure
Study / 
program

Ref Description

Nussinov et al. [12] The proposed program is used for RNA 
secondary structure prediction based on the 
concept of minimizing free energy.

Mfold [13] Mfold utilizes a dynamic programming 
algorithm to search for structures with 
minimized free energy.
Availability:
http://mfold.rna.albany.edu/?q=mfold

Dirks and Pierce [15] It is a dynamic programming algorithm 
for computing the partition function and 
minimum energy structure of secondary 
structures

RNAStructure [16] It forecasts both RNA secondary structures 
and the probabilities of base pairing.
Availability:
http://rna.urmc.rochester.edu/
RNAstructureWeb/

RNAfold [17] RNAfold predicts structures with the 
minimum free energy and the probabilities 
of base pairing from single sequence. 
Availability:
http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.
cgi

Sfold [18] Sfold creates structures through statistical 
sampling, considering an ensemble weighted 
by Boltzmann probabilities.
Availability:
http://sfold.wadsworth.org/cgi-bin/index.pl

Pknots [19] Pknots is used for the prediction of 
pseudoknot structures through the 
application of a dynamic programming 
algorithm, and by the minimization of the 
free energy.
Availability:
http://selab.janelia.org/software.html

PknotsRG [20] RNA secondary structure prediction 
with medium-sized pseudoknots using 
Thermodynamic RNA folding that 
implemented via dynamic programming 
(DP).
Availability:
http://bibiserv.techfak.uni-bielefeld.de/
pknotsrg

UNAFOLD [21] It integrates collection of programs that 
simulate folding, hybridization, and melting 
pathways for one or two single-stranded 
nucleic acid sequences.

Vienna server [22] This program provides the capability to 
predict the secondary structure from a single 
sequence as well as the consensus secondary 
structure for a collection of aligned 
sequences.
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Namsrai et al [23] The proposed works predicts RNA 
secondary structure with simple pseudo 
knots based on dynamic programming.

Mathews et al [24] The presented program Integrates constraints 
from chemical modifications into a dynamic 
programming algorithm to predict RNA 
secondary structure.

Soft Computing 
Soft Computing (SC) comprises a collection of methods that can be 
employed either individually or in combination to address various 
practical challenges. SC methodologies exploit the tolerance of 
imprecision, uncertainty, approximate reasoning, and partial truths 
in order to provide cost-effective and optimal solutions [25].

Among of the most commonly utilized SC techniques for RNA 
structures prediction include Evolutionary Computation, such 
as Genetic algorithms, and Artificial Neural Networks (ANN).

Genetic Algorithm (GA)
Genetic algorithms (GAs) are dynamic and robust tools founded 
on the concepts of selection and evolution. GAs are employed to 
generate multiple solutions for a specific problem [26]. Genetic 
algorithms become the preferred option when addressing real-
world challenges characterized by vast and intricate search spaces, 
rendering conventional search methods ineffective.

The utilization of Genetic Algorithms (GAs) necessitates the 
definition of specific operators, including selection, crossover, and 
mutation. Additionally, a fitness function is essential to assess the 
quality of each solution. The application of GAs for predicting 
secondary structures has been explored in numerous studies. 

Based on the free energy minimization principle and the RNA 
folding pathways, Van Batenburg et al. introduce a Genetic 
Algorithm (GA) for RNA secondary structure prediction [27]. 
This algorithm commences by creating a list of potential structures, 
which constitutes the initial population. The operations of 
crossover and mutation serve as key operators, and two distinct 
fitness criteria are applied: the summation of stem lengths and the 
summation of stem stacking energies.

Artificial Neural Networks (ANN)
Artificial Neural Networks (ANNs) represent an information 
processing system composed of a large number of interconnected 
processing units often referred to as “neurons.” These neurons 
work collaboratively to address specific problems. ANNs are 
designed to tackle artificial intelligence challenges by acquiring 
knowledge through learning. ANNs also find applications in tasks 
such as classification, clustering, and prediction [8]. Several studies 
have explored the use of ANNs for RNA structures prediction.

In reference 28, they introduce a parallel algorithm based on 
a Hopfield Neural Network (HNN) for the prediction of RNA 
structures [28]. This method employs the HNN to identify a nearly 
maximal independent set within an adjacent graph formed by 
RNA base pairs. Subsequently, it calculates the stable structure 
of the RNA.

Table 2: provides a summary of the primary soft computing 
techniques employed for RNA secondary structure prediction
Study / 
program

Ref Description

CyloFold [29] It is a computational method for RNA secondary 
structure prediction that is not restricted in terms 
of pseudoknot complexity.
Availability:
http://cylofold.abcc.ncifcrf.gov.

TT2NE [30] TT2NE introduces an innovative algorithm 
for forecasting RNA secondary structures that 
encompass pseudoknots. This approach relies on 
classifying RNA structures by their topological 
genus, ensuring the identification of the 
minimum free energy structure, irrespective of 
pseudoknot topology.
Availability:
http://ipht.cea.fr/rna/tt2ne.php.

ILM [31] ILM is an algorithm for predicting pseudoknot 
structures using an iterative loop matching 
approach.
Availability:
http://www.cs.wustl.edu/_zhang/projects/rna/ilm/

Hotknot [32] Hotknot is a heuristic-based algorithm designed 
for the prediction of RNA secondary structures, 
including pseudoknots.
Availability:
http://www.cs.ubc.ca/labs/beta/Software/
HotKnots

MPGAfold [33] It uses a genetic algorithm to predict folding 
pathways and functional substructures.
Availability:
http://www-lmmb.ncifcrf.gov/users/bshapiro//
mpgaFold/mpgaFold.html

Kinwalker [34] It is an approach based on heuristics for the 
kinetic modeling of RNA folding.
Availability:
http://www.bioinf.uni-leipzig.de/Software/
Kinwalker/

RNAShapes [35] RNAShapes chooses suboptimal conformations 
by employing a simplified representation of 
RNA structures.
Availability:
http://bibiserv.techfak.uni-bielefeld.de/
rnashapes/

Koessler 
et al.

[36] The presented program builds a predictive model 
for RNA secondary structure using a graph-
theoretic tree representation.

Liu et al [28] It is a parallel algorithm based on a Hopfield 
Neural Network (HNN) for the prediction of 
RNA structures.

Shapiro et al [37] RNA secondary structure prediction from 
sequence alignments using a network of 
k-nearest neighbor classifiers.

Batenburg 
et al

[27] It is a Genetic Algorithm (GA) for RNA 
secondary structure prediction.

RnaPredict [38] RnaPredict is an evolutionary algorithm for NA 
secondary structure prediction.

GAknot [39] GAknot is used for predicting RNA secondary 
structures with pseudoknots using genetic 
algorithm

Zou et al [40] Predicting RNA secondary structure based on the 
class information and Hopfield network.
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UFold [41] UFold is a deep learning-based method for 
RNA secondary structure prediction, trained 
directly on annotated data and base-pairing rules. 
It proposes a novel image-like representation 
of RNA sequences, which can be efficiently 
processed by Fully Convolutional Networks 
(FCNs).
Availability:
https://ufold.ics.uci.edu

REDfold [42] REDfold, a novel deep learning-based method 
for RNA secondary prediction. It utilizes an 
encoder-decoder network based on CNN to learn 
the short and long range dependencies among 
the RNA sequence, and the network is further 
integrated with symmetric skip connections 
to efficiently propagate activation information 
across layers.

RANknot [43] RNAKnot is an algorithm for pseduoknotted 
RNA secondary structure based on genetic 
algorithm and GRSP method.

RFold [44] RFold, a simple yet effective RNA secondary 
structure prediction in an end-to-end manner. 
RFold introduces a decoupled optimization 
process that decomposes the vanilla constraint 
satisfaction problem into row-wise and column-
wise optimization, simplifying the solving 
process while guaranteeing the validity of the 
output.

RTfold [45] RTfold is based on three mains ideas: 1) end-
to-end training combined with constrained 
optimization, 2) neural architecture with layer-
wise recurrent inductive bias, and 3) a larger 
training set augmented with synthetic data for 
pretraining.

Comparative Approach (CA) 
Due to the inherent connection between structure and function, 
it is reasonable to hypothesize that sequences sharing the 
same functions should also exhibit similar structures [46]. 
The comparative approach focuses on searching for conserved 
regions within the sequences, for this reason, it is employed when 
dealing with an alignment of sequences from different species 
that serve the same function. In such cases, CA is deemed more 
pertinent compared to the dynamic approach that relies on the 
thermodynamic principle [8].

The initial effective algorithm employing this approach was 
created by Han and Kim [47]. This algorithm takes a collection 
of aligned sequences and conducts a phylogenetic comparison, 
seeking a specific number of the most likely shared structures. 
It comprises two key phases, with the first step dedicated to the 
examination of the phylogenetic comparison, while the second 
step is focused on choosing the most optimal secondary structures.

Table 3: outlines the most popular methods based on the 
Comparative Approach used to predict RNA secondary 
structure
Study / 
program

Ref Description

RNAalifold [48] RNAalifold determines the lowest-energy 
structures by analyzing sequence alignments 
through covariation analysis.
Availability:
http://rna.tbi.univie.ac.at/cgi-bin/RNAalifold.cgi

TurboKnot [49] TurboKnot predicts RNA secondary structure by 
estimates the base pairing probabilities.

Tfold [50] TurboKnot predicts non-coding RNA secondary 
structures. It takes as input a RNA sequence for 
which the secondary structure is searched and a 
set of aligned homologous sequences.

PETFOLD [51] PETFOLD unifies evolutionary and 
thermodynamic information for RNA folding of 
multiple alignments.

Pcluster [52] Pcluster subgroups an alignment based on 
differences in secondary structure prediction by 
Pfold and was found to reveal misalignments, 
pseudoknots, and helix insertions /deletions.

PPfold [53] PPfold forecasts RNA secondary structures by 
incorporating phylogenetic information and 
supplementary data.
Availability:
http://daimi.au.dk/_compbio/pfold/

DAFS [54] For a given unaligned two sequences DAFS is 
used for aligning and folding RNA sequences.

RNASampler [55] RNASampler is a new sampling based algorithm 
for common RNA secondary structure prediction 
and structural alignment.

MARNA [56] MARNA is a method for aligning multiple 
RNA sequences through sequence and structure 
comparisons.
Availability:
http://rna.informatik.uni-freiburg.de/MARNA/
Input.jsp

Doose, et al [57] This program uses the evolutionary history of a 
group of aligned RNA sequences for sampling 
consensus secondary structures, including 
pseudoknots.
Availability: 
http://evol.bio.lmu.de/_statgen/software/
phyloqfold/.

SimulFold [58] SimulFold Simultaneously deducing RNA 
structures, which encompass pseudoknots, 
alignments, and trees, through the utilization of a 
Bayesian Markov Chain Monte Carlo (MCMC) 
framework.

RNA Tertiary (3D) Structure Prediction 
While the secondary structure offers a fundamental outline of 
an RNA molecule, having knowledge of the RNA’s 3D structure 
remains essential for gaining a comprehensive understanding of its 
function. Initially, RNA structure experts successfully constructed 
3D structures for common RNA molecules like tRNAs, group II 
introns, and RNase P [59].
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In recent years, various computational methods have been developed to predict RNA 3D structures. These methods can be categorized 
into three models or approaches, including Knowledge-based approach, physics-based approach, and Deep-Learning-Based approach.

Knowledge-Based Modeling 
As the number of experimentally determined structures in the database continues to grow, RNA 3D structures can be predicted through 
the assembly of known motifs or sequence alignment. Knowledge-based modeling primarily encompasses graphic-based modeling 
and homology-based modeling [60].

Graphics-Based Methods 
Graphical modeling typically offers a graphical interface, enabling users to create RNA 3D structures through the manipulation or 
assembly of RNA segments. The primary graphical-based algorithms include, ERNA-3D, MANIP, RNA2D3D, S2S/Assemble [61-64].

Homology-Based Methods
Given that the 3D structure of a macromolecule evolves at a much slower rate than its sequence, evolutionarily related macromolecules 
typically maintain similar 3D structures even when their sequences diverge. Leveraging this observation, the 3D structures of a 
macromolecule can be constructed by aligning the sequence of the target molecule with the structures of template molecules.

Comparative modeling, which is also known as homology-based modeling or template-based modeling, has proven to be quite 
effective in predicting the 3D structures of proteins. Similarly, in the context of RNA 3D structure prediction, several algorithms, 
including Mode RNA [66], RNA Builder, and 3Drna, have been created for constructing RNA 3D structures [65-68].

Table 4: provides an overview of the primary Knowledge-based techniques utilized for predicting RNA secondary structure
Study /program Ref Classification Model Description Availability
MANIP [62] Graphics-based All-atomic MANIP empowers users to construct full RNA 

structures on a computer screen by assembling 
recognized 3D motifs based on the corresponding 
secondary structures derived from comparative 
sequence analysis.

http://www-ibmc.u-strasbg.fr/
upr9002/westhof/index.html

ERNA-3D [61] Graphics-based All-atomic The program provides a graphical interface for 
users to freely position the A-form helices and to 
directly pull the single inter-helical strands.

http://owww.molgen.mpg.
de/_ag ribo/ag brimacombe/
ERNA3D/ERNA-3D.html

RNA2D3D [63] Graphics-based All-atomic It predicts rough 3D structures for large RNAs 
based on their secondary structures. But, manual 
manipulation is required to generate satisfactory 
3D structures through a graphical interface with 
special tools such as compacting, stem-stacking, 
segment-positioning, and energy-refinement.

http://www.ccrnp.ncifcrf.gov/
users/bshapiro/software.html

S2S/Assemble [64] Graphics-based All-atomic The S2S/Assemble algorithm is a user-friendly, 
interactive graphical tool that facilitates the 
display, manipulation, and interconnection of 
RNA data, seamlessly transitioning from sequence 
to structure. It also supports the analysis and 
construction of complex RNA 3D architectures.

http://bioinformatics.org/
assemble/

ModeRNA [66] Homology-based All-atomic The ModeRNA algorithm offers the flexibility 
of basic structure prediction using templates and 
alignments, along with user-driven structural 
manipulations, such as fragment assembly.

http://iimcb.genesilico.pl/
moderna/

RNABuilder [67] Homology-based All-atomic RNABuilder is a method for comparative 
modeling of RNA structures by using the distance 
and torsion angles from the aligned regions of the 
template as modeling restraints.

https://simtk.org/home/
rnatoolbox

3dRNA [68] Homology-based All-atomic 3dRNA is an expedited and automated method for 
constructing RNA 3D structures. It achieves this 
by assembling A-form helices and diverse loops, 
utilizing structures extracted from an existing 
database.

http://biophy.hust.edu.cn/
new/3dRNA

RNAComposer [69] Homology-based All-atomic RNAComposer is a swift and entirely automated 
fragment assembly model designed for RNA 3D 
structure prediction. It relies on the use of the 
smallest secondary elements (SSE) as building 
blocks, contributing to its relatively high accuracy 
in predicting RNA 3D structures based on 
secondary structures.

http://rnacomposer.ibch.
poznan.pl
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FARNA/
FARFAR/
FARFAR2

[70-72] Homology-based All-atomic It is an automated energy-based method for 
RNA 3D structure prediction. FARNA employs 
a Monte Carlo algorithm and a simplified energy 
function that prioritizes base pairing and stacking 
geometries. It assembles trinucleotide fragments 
from the ribosome crystal structure into an all-
atomistic structure corresponding to the input 
RNA sequence.

http://rosie.rosettacommons.
org/

https://rosie.rosettacommons.
org/farfar2

Vfold3D [73] homology-based All-atomic Vfold3D autonomously constructs RNA 3D 
structures using 3D fragments sourced from the 
PDB database, leveraging resolved secondary 
motifs like hairpin loops and multi-way junction 
loops.

http://rna.physics.missouri.edu/
vfold3D/

VfoldLA VfoldLA homology-based All-atomic VfoldLa is an automated approach for predicting 
RNA 3D structures from provided sequences and 
2D structures. This method relies on the assembly 
of A-form helices using loop templates extracted 
from previously known RNA 3D structures.

http://rna.physics.missouri.edu/
vfoldLA/

FebRNA [75] homology-based All-atomic FebRNA is a fragment-ensemble-based model 
used to construct RNA 3D structures, taking 
secondary structures as input. It systematically 
chooses templates based on secondary motif types 
and lengths, without considering the sequences. It 
then transforms all-atom fragments into coarse-
grained (CG) representations using a CG model 
that accounts for salt effects.

https://github.com/Tangroup/
FebRNA

Physics-Based Modeling 
 Physics-based methods rely on biophysical principles to simulate the folding process, aiming to find a conformation with the lowest 
free energy. Given that modeling a full-atom RNA structure typically entails numerous degrees of freedom and, consequently, 
significant computational complexity, various coarse-grained predictive models have been introduced at different resolution levels, 
incorporating physical simplifications [59].

All-Atomistic Model
Traditionally, all-atomistic molecular dynamics using physics-based atomic force fields like CHARMM and AMBER have been 
widely employed for macromolecular modeling, offering insights into the actual movements of atoms [7]. However, the challenge of 
folding RNA 3D structures persists due to the numerous degrees of freedom, even with the most advanced computational resources 
[5]. Consequently, models that assemble all-atomistic fragments based on known fragments or secondary structures have been 
developed, as exemplified by the Ernwin, RNAnbds and RSIM [76-80].

Coarse-Grained Model
An alternative approach to reduce computational costs involves reducing the number of particles by considering a cluster of functional 
atoms as a single bead. The size of this bead can vary, representing either a small group of atoms or a larger assembly, depending 
on the model’s resolution [5]. After the initial development of the one-bead RNA model by Malhotra and Harvey, numerous coarse-
grained (CG) models have been introduced to predict RNA 3D structures or to model interactions between RNAs and other molecules, 
examples of which include Vfold, YUP and NAST [81- 84].



Citation: Abdelhakim El Fatmi, Molay Ali Bekri (2023) A Review of Bioinformatics Methods for RNA Secondary and Tertiary Structures Prediction. Journal of Clinical 
& Biomedical Research. SRC/JCBR-185. DOI: doi.org/10.47363/JCBR/2023(5)164

J Clin Biomed Res, 2023          Volume 5(6): 7-11

Table 5: summarizes the major physics-based methods for RNA tertiary structure prediction
Study / 
program

Ref Model Description YUP [83]

YUP [83] Coarse-grained:
One-bead

YUP is employed for simulating the folding of RNA 
structures, and it selects the conformation with the lowest 
energy as the predicted ultimate structure.

http://rumour.biology.
gatech.edu/YammpWeb/

NAST [84] Coarse-grained:
One-bead

NAST uses RNA-specific Knowledge-based potential 
energy and molecular dynamics algorithms to predict the 
RNA 3D structures.

https://simtk.org/home/nast

IFoldRNA [85] Coarse-grained:
Three-bead

iFoldRNA can predict RNA 3D structures from 
their sequences, by employing a discrete molecular 
dynamics algorithm and a clustering method to identify 
conformations with low energy.

https://dokhlab.med.psu.edu/
ifoldrna

CG model with
salt effect

[86] Coarse-grained:
Three-bead

This model utilizes MC simulated annealing or replica-
exchange MC (REMC) algorithm to predict 3D structures 
for different RNA components based on sequence data.

No

SimRNA [87] Coarse-grained:
Five-bead

SimRNA employs the replica exchange Monte Carlo 
algorithm to efficiently forecast RNA 3D structures 
directly from genetic sequences within a practical 
timeframe.

https://genesilico.pl/SimRNAweb

IsRNA/
IsRNA1/ 
IsRNA2

[88-
90]

Coarse-grained:
Four /Five-bead

It is a coarse-grained model for de novo prediction and 
blind screening of RNA 3D structures.

http://rna.physics.missouri.
edu/IsRNA/index.html

RNAJP [91] Coarse-grained:
Five-bead

By leveraging the OpenMM toolkit, RNAJP can 
consistently forecast RNA 3D structures using secondary 
structures as the input, and it selects the top-1 predicted 
structure based on a dedicated energy function.

http://rna.physics.missouri.
edu/RNAJP/index.html

HiRE-RNA [92] Coarse-grained:
Six/seven-bead

HiRE-RNA leverages the REMD algorithm for 
conformation sampling and employs a clustering method 
to identify low-energy conformations. This approach 
enables the prediction of 3D RNA structures based on 
genetic sequences, including complex RNA structures with 
secondary structure information.

http://www-lbt.ibpc.fr/LBT/index.
php?page=lbt&hl=en

Five-bead Model [93] Coarse-grained:
Five-bead

By employing molecular dynamics simulations and the 
simulated annealing algorithm, this model becomes 
a valuable tool for forecasting the three-dimensional 
structures of small RNAs and can also encompass the 
three-dimensional structures of larger RNA molecules by 
incorporating available experimental data.

http://biomol.bme.utexas.edu/lab/

Vfold [82] Coarse-grained:
Three-bead

Vfold utilizes experimental thermodynamic data for 
helices and incorporates loop entropy derived from 
random walks of virtual bonds in a diamond lattice. 
This approach allows Vfold to construct the free energy 
landscape by systematically considering all possible 
secondary structures, including pseudoknots

http://vfold.missouri.edu/chen-
software02.html

RNAnbds [79] All-atomic RNAnbds is specifically created to anticipate RNA 3D 
structures through a fragment assembly approach that 
relies on statistical base configurations obtained from 
databases, considering both the sequence and spatial 
relationships of neighboring bases

http://biophy.nju.edu.cn/index-en.
htm

RSIM [80] All-atomic RSIM utilizes a Monte Carlo algorithm with closed 
moves to forecast RNA 3D structures based on secondary 
structure constraints

http://www.github.com/jpbida/
rsim

MC-fold/MC-
Sym

[94] All-atomic As secondary structures offer sufficient constraints for 
automated 3D construction, the MC-fold/MC-sym pipeline 
deduces RNA secondary structures from sequence data 
and subsequently constructs a series of 3D structures 
guided by these secondary structures

http://www.major.iric.ca

Ernwin [78] All-atomic By integrating an energy function with Markov chain 
Monte Carlo simulation, the Ernwin model adeptly 
anticipates RNA 3D structures using secondary structure 
information. It identifies the predicted final structure by 
selecting the conformation with the lowest energy in the 
ensemble.

http://github.com/
pkerpedjiev/ernwin
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The Deep-Learning-Based Approaches
The rise of artificial intelligence has made significant strides in advancing science and technology worldwide in recent years. Building 
upon the success of deep learning in protein 3D structure prediction, some deep-learning-based methods have emerged for predicting 
RNA 3D structures, albeit facing the challenge of limited RNA structural data in the PDB database when compared to proteins [95]. 
Nevertheless, it is important to acknowledge that achieving precise predictions of macromolecule 3D structures often hinges on the 
availability of extensive experimental structural data.

Table 6: presents the current deep-learning-based methods for RNA tertiary structure prediction
Study / program Ref Description Availability
DeepFoldRNA [96] This program predicts RNA structures from sequence alone by 

coupling deep self-attention neural networks with gradient-based 
folding simulations.

https://zhanggroup.org/
DeepFoldRNA

TrRosettaRNA [97] It is a novel deep learning-based approach to de novo prediction 
of RNA 3D structure by using a transformer network and energy 
minimization

https://yanglab.nankai.edu.cn/
trRosettaRNA/

epRNA [98] epRNA is a convolutional neural network which predicts all 
pairwise distances between residues in an RNA, using a recently 
described smooth parametrization of Euclidean distance matrices.

https://bitbucket.org/dokhlab/
eprna-euclideanparametrization-
of-rna/src/
master/

E2Efold-3D [99] E2Efold-3D is an End-to-end deep learning approach has been 
proposed to accurately perform the de novo RNA structure 
prediction.

https://github.com/RFOLD/
RhoFold

Conclusion
As comprehending RNA structures, particularly in three 
dimensions, holds vital significance in unraveling the enigmatic 
RNA world, there has been a surge in the development of 
computational models for RNA structure modeling in recent years. 

Predicting RNA secondary structures is comparatively more 
manageable through techniques like sequence alignment, 
thermodynamics-based dynamic programming algorithms, or a 
combination thereof. Enhancing the accuracy of such predictions 
can be achieved through expanding structural databases or refining 
empirical thermodynamic parameters. However, the field of RNA 
3D structure prediction is still in its early stages and confronts 
several challenges. Nonetheless, recent achievements in RNA 
3D structure modeling offer promising prospects for exciting 
advancements in RNA structure prediction in the upcoming 
decade.
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