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Introduction
In recent years a great deal of attention has been attracted to 
structured matrices in mathematics because they appear in 
numerous applications in engineering, physics and computational 
science. One of the most important classes of them, whichhave 
been found extremely useful to solve wide range of complex 
problems is Comrade matrices. Due to their unique structure that 
allows computing, they are essential in manydomains such as 
systems theory, polynomial computations, numerical analysis, etc.

Comrade matrices are a generalisation of manyother familiar 
structured matrices (in particular, arrowhead matrices and 
tridiagonal matrices), and are also a special instance of bordered 
ma- trices. This is a richer theoretical relationship that widens 
their circle of applicability. Comrade matrix is frequently used 
in systems theory as a means to help model dynamic systems and 
study their stability. In polynomial computations they are used to 
divide generalized polynomials and they provide a nice setting 
for problems of eigenvalues.

While they have such general usefulness, the study of Comrade 
matrices has been left relatively unexplored compared to the 
simpler case. We hope to contribute to this new field by providing 
new results and methods that exploit their structural properties. 
In particular, we present a decomposition image model using 
LT factorization, which enables fast inverse computation. This 
is a major step toward theorical and practical use of quantum 
computers, including applications such as solving linear systems 
and alkorithms for polynon biniding.

Moreover, we conduct a comparison of our approach to existing 
methods to assess the performance of our proposed method, 
including the Toeplitz Hessenberg algorithm and the LT 
decomposition method. We further analyze its performance in 
detail to illustrate the benefits of our method, in terms of the 
running time.

The structure of the rest of this paper is as follows, Section 2 
describes the decomposition LT of the comrade matrix. After 
proposing our decomposition method in Section 3, we present 
various decomposition T + K for it in Sections 4-5-6. Numerical 
experiments and a comparison with other algorithms are presented 
in Section7.

A New Decomposition LT for the Comrade Matrix

Consider the comrade matrix of the form:

                                                                                             (1)
 

If the matrix Cn is multiplied by PCnP, we convert the matrix 
Cn in its first form into the form Cn with δi on last row, where:

P = (pij) and pij = 1, if i + j = n, and zero otherwise.

And       take the form:
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                                                                                            (2)

Theorem 1 Hence, any matrix     is equal to the product

                                                                                         (3)

With:

With:

Proof 1 By (4) we obtain clearly x1 = a0 also

In addition, through L,T direct product, we obtain the following 
recurrence relationships (or “Gaussian”):

                                                                                             (6)

for r = 2, ..., n − 1 we obtain:

And we conclude the formula of xr

A Decomposition T + K of a Comrade Matrix
Let Cn an n × n real or complex matrix:

                                                                                                (8)

We denote that:

                                                                                               (9)

And

                                                                                              (10)

As we show we obtain a tridiagonal matrix plus an n × n matrix.
We applied a CL factorization on the tridiagonal matrix T:

Theorem 1. Such tridiagonal matrix T can be written as the product 
T = CL, where:

(5)

(4)

(7)
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And

With:

And

Proof. Immediatly we obtain xn = an, and

Moreover, by direct multiplication of C and L we get the recurrence 
formulas:

We obtain:

And

Inductively, we conclude the formula for xr For this reason, it 
remains to prove equation for r = 1. In fact, we have

Inverse of the Comrade Matrix Cn: Algorithm 1
Any comrade matrix Cn can be written as:

                                                                                            (11)

                                                                                             (12)

A companion matrix, then:

                                                                                             (13) 

We have also:

                                                                                            (14)
 

With:

                                                                                           (15)
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Inverse of the Comrade Matrix Cn: Algorithm 2
As the result we can write the comrade matrix Cn on the form:
                                                                             
                                                                                         (16)

Applying the Sherman-Morrison-Woodbury formula we get:

                                                                                            (17)

                                                                                            (18)

Where

Where

Inverse of the comrade matrix Cn: Algorithm 3
In this section we consider the comrade matrix as:

With T is a tridiagonal matrix. Applying the Sherman-Morrison-
Woodbury formula we get:

                                                                                           (19)

We supose that T is non-singular and from :T−1T = I we obtain the 
column vector for the inverse Ts−1 as:

Consider the sequence of numbers                      and

                    characterized by a term recurrence relation:

And

Theorem 2 Suppose that          then Tn is invertible and the 
column Dn will be

Numerical Experiments:
In this section, we give a numerical example to illustrate the 
effectiveness of this algorithms. Our algorithm is tested by 
MATLAB R2019a.
Consider the following 5-by-5 comrade matrix

The inverse of the matrix C is given as:

In the table we give a comparison of the running time between 
this three algorithms and LU method in MATLAB R2020a.
The running time (in seconds) of two algorithms in MATLAB 
R2020a.

Table 1: The Running Time
Size of the 
matrix (n)

Algorithm 1 Algorithm 2 Algorithm 3 LU method

100 0.045385 1.281990 0.168303 0.343213
200 0.160370 5.992268 0.024366 0.590798
300 0.305907 22.665200 0.052737 1.211636
500 1.059106 336.329051 0.125830 4.252555

Conclusion
So far with all so much valuable and insightful results we have 
obtained using the LT decomposition method. In the decomposition, 
L is a lower triangular matrix with nonzero entries below and on 
the main diagonal and T is a tridiagonal matrix with nonzero entries 
on the main diagonal and two adjacent diagonals. This scheme 
not only makes it easier to represent the original matrix, but 
also improves computational efficiency and helps with obtaining 
analytical solutions for some problems. It turns out this structure of 
the decomposition is especially useful for analyzing and inverting 
structured matrices such as the Comrade matrices [1-13].
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