
J Arti Inte & Cloud Comp, 2023 Volume 2(4): 1-4

Review Article Open Access

A Comprehensive Automated Generation of Functional Coverage
and Structured High Verification Plan for Complex Architecture of
GPUs and AI Accelerator
Ankit Chandankhede

Journal of Artificial Intelligence &
Cloud Computing

*Corresponding author
Ankit Chandankhede, USA.

Received: December 01, 2023; Accepted: December 05, 2023; Published: December 14, 2023

ISSN: 2754-6659

ABSTRACT
Functional coverage is the most important metric in design verification and writing the functional coverage accurately needs skills and is manual process.
Moreover, hitting different complex cross functional cover points requires directed complex testcase. Deploying AI to write the cover points and writing
sequences to hit complex scenarios allows easier test writing and converging on functional coverage for complex architectures such as graphics-purpose
unit GPU and AI accelerators. Script also allows to create a high verification plan and analyze effectively. This HVP plan can also be used across DUTs that
allows to measure effective coverage across different levels of verifications abstractions.

Introduction
Functional verification has paramount importance in ensuring the
completeness of the testing of today's advanced semiconductor
designs, particularly in cutting-edge technologies like Graphics
Processing Units (GPUs) and AI accelerators. Maintaining and
delivering high quality function design by meeting performance
standards for such systems which are powering modern
computational tasks on phones, servers, gaming for rendering
and recently inference and training of AI models.

Labor intensive testing platforms for such complex architecture
has been a bottleneck and is subject to human errors on either
interpreting the specification of architecture or missing out on
critical corner case scenarios. Test planners in such an environment
must define each functional cover point across different features,
tabulating a series of scenarios and potential security scenarios
from hacker’s perspective. This is followed by coding the
functional coverage meticulously through painstaking manual
effort often needs expertise in coding such complex cover points
and further craft the test cases. This demands immense engineering
effort and prolonged development and testing cycles. Often such
processes may hit pitfalls in execution, resulting in delayed product
launch and missing market opportunity.

Complexity of modern computer architectures such as GPUs and
AI accelerators, which encompasses numerous new features, data
paths, newer set of instructions in kernel and new commands for
processing a workload. Verification plays an important role in
identifying design bugs and reverifying the bug fixes through
comprehensive testing. Functional coverage provides a direct
correlation between testing environment, test plan and design
health.

Considering aforementioned challenges, deploying artificial
intelligence (AI) and automation through scripting to efficiently

converge functional coverage offers ease on complex testing
requirements and minimizes human error.

This paper underscores the importance of AI-driven and
automation methodologies that addresses complexities of
functional verification in complex architectures. It presents a
framework for creating a structured test plan including cover
points, converting these cover points from a table to system verilog
functional coverage code, mapping coverpoint in structured high
verification plan (HVP) in terms of feature, priority, and unit
coverpoints. This automation streamlines the most pivotal metric
of the verification process, thus optimizing coverage writing and
analyses of functional coverage for quicker convergence to ensure
high quality design.

Details in subsequent sections of this paper provides in depth
understanding of automation of structured coverpoint scenarios,
creating coverpoints, reanalyzing results using AI model from
synopsys, HVP mapping and real time feedback to current test
constraints. Additionally, the paper highlights other bottleneck
facets of verification methodology, their impact and potential
solutions.

Automated Functional Coverage Generation
Test planners are provided with specific format of tabulating
the scenarios from testplan with specific priorities, features and
sampling conditions. Scripts are fed with this specific tabulated
format to create cover points such as explicit bins, transitional
bins, reputation bins, wildcard bins, ignore bins, illegal bins and
cross coverage bins. Moreover, the script is scaled to parse the
protocol and packet information to generate automated coverages
and hence can be hooked to interfaces which follow a particular
protocol. Thus, illuminating the burden of the exhaustive manual
process of creating the cover points and enhancing the overall
efficiency in verification.

USA

Citation: Ankit Chandankhede (2023) A Comprehensive Automated Generation of Functional Coverage and Structured High Verification Plan for Complex Architecture
of GPUs and AI Accelerator. Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-388. DOI: doi.org/10.47363/JAICC/2023(2)371

J Arti Inte & Cloud Comp, 2023 Volume 2(4): 2-4

Following is the Structured Tabulated Format for Test Planners:
Legacy
Feature

Instruction
Caching

Scenario Type
(Cover/
Assert/
Check)

SOC level Priority Bin info Type of
coverpoint

Signal
or

register
to Code

cps

Expression
needed by cp

Sampling
condition

Project More info

All
Execution
Commands

Cover N P0 0:3

ignore:
0=>3

Transition instr.
exec_
cmd

instructoncache instruction_
cache_
validq

A Testplanner
providing more
info for better

understanding of
the bins

Cover N P1 0:3

Repeat0: 2
times

1: 3 times
2: 4 times

Repetitive_
transition

instr.
exec_
cmd

instructoncache instruction_
cache_
validq

A Checks
repeation of
command

Interface Dispatch_
interface

Scenario Type
(Cover/
Assert/
Check)

SOC level Milestone Bin info Signal
or

register
to Code

cps

Expression
needed by cp

Sampling
condition

Project More info

Column of type of coverpoint is used by the coverage coding script to specific create cover points. Script parses bins info for the values
for creating the bins over the signals from the column of signals or register code cps. Following is example of coverpoint created.

Name of the covergroup is taken from the scenario column, coverpoint is created based off of type of coverpoint and name of signal
and bin name is created based off the type of bins

Transition Coverpoint : Transition coverpoints are often used to check the transitions of finite state machines (FSM), change of
virtual channels, transition of instruction or data type command, high priority to low priority cycles, different sources going into
arbiters [1]. Such transition coverpoints exposes the corner case scenarios and hard to code. Hence the approach deploys parsing of
signal with specific values mentioned in bin_info and creates a default *_auto_transition bins and creates different bins to be ignored,
this way all transitions are covered except the ignored or illegal transitions . Repetitive cover points are also defined based off of
number repetation expected from a particular value on a signal [2].

Implicit Coverpoint: Script determines the value of the implicit bins are taken from the bin info and signal to create cover point is
taken from the Signal or register to code column.

Note: Illustrated example shows the implicit coverpoint created on a signal from an interface however implicit coverpoint can be
created on any signal [2].

Citation: Ankit Chandankhede (2023) A Comprehensive Automated Generation of Functional Coverage and Structured High Verification Plan for Complex Architecture
of GPUs and AI Accelerator. Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-388. DOI: doi.org/10.47363/JAICC/2023(2)371

J Arti Inte & Cloud Comp, 2023 Volume 2(4): 3-4

Likewise different type of cover points are generated through
this script based on the table filled by the test planner and hence
eliminating the coding cycle of such functional coverage and
multiple compile process as these cover points are guaranteed to
compile successfully.

High Verification Plan (HVP) Framework
High Verification plan is used for analyzing coverpoints in
more structured way and is often mismanaged due to nature of
coverpoints are not categorized properly and hence prioritizing
coverpoints to be analyzed and focus on becomes challenging.
Structured HVP plan is created by this automation script approach
which relies on the table 1 as mentioned above. HVP plan add all
the scenarios mentioned in the table based on the type of feature,
units that it belongs to and priority. This allows the functional
coverage analyzing engineer to effectively manage and focus
based on the highest priority, feature and complex scenario such
as cross feature and deadlock scenarios.

Script is also filters out the scenarios which are not applicable to
a project based on the column project. If the entry related to this
column is empty, script considers this scenario to be included by
default to all projects.

The first entry in table defines the type of cover group/ cover
point Interface:
Legacy Feature
•	 Legacy feature is defined as a feature which has existed in

previous projects. These features usually are often tested
over the generations of projects and hence defines the basic
health of the design across projects and are covered through
previous developed testcases. This is usually a first key metric
in any product development cycle to maintain backward
compatibility of newer architectures.

New Feature
•	 New feature is defined as a feature which has been introduced

in current project. New feature is most prone to bugs as the
implementation of architecture definition can be misinterpreted
and often is prone to cross units discrepancies. Hence units
which are impacted by such new features across architecture
needs outmost attention and extensive coverage. New feature
category helps to categorize unit coverages and hence helps
to prioritize to verification of such bug prone design.

Cross Feature
•	 Cross feature cover points are defined to be a cross of

multiple features. Cross feature combination often exposes
the architectural definition or design implementation across
features. In above case cross feature could be a combination
of instruction cache crossing with interface [3].

Registers
•	 Register in designs are categorized under this category.

Deadlock Scenarios
•	 Architecture encompasses arbiters which usually takes in

inputs from different sources and these sources competes
for same part of the resource and hence creates chances of
deadlocks due to back pressure of credits and holds on the
outputs of arbiter interfaces [3].

CONFIG
•	 Modern architecture is defined to be scalable for multiple

projects based on the platform for phones (low power design),
servers, gaming processors and crypto processor. Such design
is scalable based off different configurations which may or
may not enable all features, multiple instancing of certain
pipelines within the architectures based off of configuration
and hence verifying such configuration is equally important.

PARAM
•	 Often design is scaled based on the parameters for different

type of products which scales up or down the design such as
depth of FIFO, instancing same pipelines multiple times, cores
included, cache size. Hence randomizing these parameters
across design constraints for different product is outmost
important. Cover point for such parameters are included
under this category.

Testbench_opts
•	 Often testbench enables different features or capabilities using

SIMV arguments options which controls the test sequences
and constraints. Combination and standalone of such simv arg
option cover point is critical to not only test feature standalone
but also cross different feature across architecture. Such
parameters are cover through this category.

High level verification plan structured created by this automation
used in synopsys tool is shown below:

Citation: Ankit Chandankhede (2023) A Comprehensive Automated Generation of Functional Coverage and Structured High Verification Plan for Complex Architecture
of GPUs and AI Accelerator. Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-388. DOI: doi.org/10.47363/JAICC/2023(2)371

J Arti Inte & Cloud Comp, 2023 Volume 2(4): 4-4

Copyright: ©2023 Ankit Chandankhede.This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

Automated Analysis and Optimization
Analyzing coverpoints and likewise identifying the under or
over constraint are difficult and prolonged engineering process.
Synopsys tool is deployed for such analysis by feeding back the
coverage generated after the regression of test suites. This tool
identifies different under constraints from stimulus and coverage
report and hence exposing the test sequence gaps and optimizes
the stimulus generation which in turn improve test suite quality
and early convergence of functional coverage.

Figure 1 : Constrained Random Verification with ICO

Ease of Synchronizing across Test Team
Usually the verification team included multiple engineers. Often
test plan and test writers or sequence writers are different and
hence synchronization across team members in test development
or functional convergence is warranted. This structured table
provides in-depth understanding to test write from test planners
perspective and hence fewer iteration of feedback and resulting
in better communication between test planner and test writers.

Case Study: Application Across Different Projects and DUTs
Case study using this approach shows faster cycle of creating
bug free coverpoints from test planning stage, saving about
85% of coding efforts on cover points. Very complex and cross
IP coverpoints are bit challenging to be created through such
automation and hence is manual process. However relieving effort
on creating certain complex coverpoint through such automation
allows verification engineer to focus on greater complexity of
coverpoints.

Structured HVP has been key in efficient analysis of functional
coverage and has helped verification engineer to focus on high
priority coverpoint and hence effectively close on coverpoints
quickly.

Further AI tool from Synopsys provides additional assistance to
verification to engineers in identifying the under constraint and
also automatically creating stimulus to hit certain coverpoints
[4]. Automated stimulus from Synopsys has also helped to find
corner case scenarios specifically in cache hit-miss , arbiters
and command execution in execution scenarios in GPUs and AI
accelerators.

Figure 2 : Effects of ICO on Coverage Convergence

Conclusion
The integration of automation and AI tool from Synopsys in
functional verification improved efficiency, significantly enhances
the efficiency and accuracy of coverage-driven verification
processes for complex semiconductor designs. By automating
the creation of functional coverage and HVPs, this approach not
only accelerates verification cycles but also improves overall
design quality and reliability.

Future Directions
Future research directions include on expanding the capability
to create sequences based on the planned coverpoints using AI
which allow verification engineer to reduce the test developing
cycle and focus more on the complex nature of testcases if there
be any missing. Further optimizing current scripts to handle
more complex coverpoint and better structure of HVP across
different type of architectures seems a promising endeavor.
Additionally, exploring AI’s capability to debug the failure cases
to assist verification engineers on gruesome debug cycle remains
a potential to be explored.

References
1.	 (2014) Functional coverage. ASIC World https://www.asic-

world.com/systemverilog/coverage17.html.
2.	 Jonathan Bromley, Mark Litterick (2016) Effective

SystemVerilog Functional Coverage: design and coding
recommendations. Snug https://assets.website-files.com/6
3f4bb21bd5303fe472ad00e/64957f836fbf7349210cf29c_
bromley_coverage_paper.pdf.

3.	 ManiKumar Jammigumpula, Prashant K Shah (2020) A
new mechanism in functional coverage to ensure end to end
scenarios https://ieeexplore.ieee.org/document/9298222.

4.	 Accelerating Verification Shift Left with Intelligent Coverage
Optimization. Synopsys https://www.synopsys.com/cgi-bin/
verification/dsdla/pdfr1.cgi?file=ico-wp.pdf.

